© United Nations Children's Fund (UNICEF) April 2017 Permission is required to reproduce any part of this publication. Permission will be freely granted to educational or nonpro t organizations. Please contact: United Nations Children's Fund Ground Floor, B wing, Technopolish Building. Opposite Holy Family Bus Stop, Mahakali Caves Road. Andheri East Content: Institute of Resource Ananlysis and Policy & UNICEF Mumbai Photo: UNICEF, India Design Partha Chakraborty, Watershed Films **CAPACITY BUILDING** FOR PLANNING OF CLIMATE-RESILIENT WASH SERVICES IN RURAL MAHARASHTRA # Content | Ch. | Title | Page | | | |-----|----------------------------|------|--|--| | | List of Abbreviations | | | | | | List of Table | | | | | | List of Diagram and Figure | | | | | | List of Diagram and Figure | | | | | | Acknowledgement | viii | | | | | Executive Summary | ix | | | | Ch. | Title | Title | | | | | | |-----|-------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----|--|--|--| | | Intro | ntroduction | | | | | | | II | Obj | Objectives of the Project | | | | | | | | | Conceptual and Analytical Frameworks for<br>Assessing Climate Risks in WASH Sector | | | | | | | | 01 | Climat | e Risk Assessment and Mapping | 4 | | | | | | 02 | Mapping of WASH Institutions and Programmes | | | | | | | | 03 | | ng of Climate Resilient<br>HInterventions | 7 | | | | | | 04 | Identif<br>Capab | 7 | | | | | | IV | Clin<br>Rev | 8 | | | | | | | | 01 | | rability and Risk induced<br>mate Hazards in WASH | 8 | | | | | | | 01.1 | Studies on Climate<br>Risk in WASH | 8 | | | | | | | 01.2 | Various Indices on Climate<br>Vulnerability and Resilience | 10 | | | | | | 02 | for Im | ations and Best Practices<br>proving Climate Resilience<br>SH: Global Review | 15 | | | | | | | 02.1 | Managing Water Quantity | 15 | | | | | | | 02.2 | Managing Water Quality | 16 | | | | | | | 02.3 | Improving Sanitation and Hygiene | 17 | | | | | Ch. | Title | Title | | | | | |-----|-------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------|----|--|--| | V | An Index for Assessing Climate Induced Risk in Water and Sanitation | | | | | | | | 01 | | Development for Assessing<br>e Induced Risk in WASH | 18 | | | | | | 01.1 | Factors Influencing Climate-<br>Induced Hazard in WASH | 18 | | | | | | 01.2 | Factors Influencing<br>Community's Exposure<br>to Hazards | 18 | | | | | | 01.3 | Factors Influencing Community<br>Vulnerability to Hazards | 19 | | | | | 02 Computation of the Composite Index | | | 26 | | | | VI | Climate-Induced Risk in WASH for Marathwada and Vidarbha Divisions of Maharashtra | | wada and Vidarbha | 27 | | | | | 01 | 01 Data Types and Source | | | | | | | 02 Results and Discussions | | | 27 | | | | | 03 Factors Causing High Climate Risk in Certain Districts and the Ways to Reduce it | | | 30 | | | | Title | ; | | Page | |-------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | | | 35 | | 01 | Introdu | uction | 35 | | 02 | | | 37 | | 03 | | | 38 | | | 3.1 | Indian Disaster Resource<br>Network (IDRN) State database | 38 | | | 3.2 | Standard Operating Procedure<br>for responding to natural<br>disasters-Rural drinking water<br>supply and sanitation-2011 | 38 | | | 3.3 | Preparedness | 38 | | 04 | | | 39 | | | 4.1 | Agencies and organizational structures | 39 | | | 4.2 | Supply and cost norms for rural water supply and sanitation schemes | 41 | | | 4.3 | Administrative procedures | 41 | | | 4.4 | Legal and policy framework relating to rural water supply and sanitation | 41 | | 05 | | | 43 | | | 5.1 | Institutional preparedness<br>and programmes to<br>check climate-induced<br>hazards in Maharashtra | 43 | | | | 5.1.1 Institutional arrangement for disaster management | 43 | | | | 5.1.2 Maharashtra<br>State Disaster<br>Management Plan | 44 | | | 5.2 | Measures to reduce exposure of WASH systems to climate induced hazards | 44 | | | 5.3 | Measures to reduce community vulnerability to climate-induced hazards | 47 | | | 01<br>02<br>03 | O1 Introduction of the control th | O2 Strategic Framework for Climate Resilient WASH Development O3 Analysis of Disaster Reduction Approaches and Measures in India O3.1 Indian Disaster Resource Network (IDRN) State database O4 Standard Operating Procedure for responding to natural disasters-Rural drinking water supply and sanitation-2011 O5.2 Supply and cost norms for rural water supply and sanitation schemes O6.4 Supply and cost norms for rural water supply and sanitation schemes O6.5 Overview of Disaster Management Measures in Maharashtra O7.6 Supply and sanitation O8.7 Overview of Disaster Management Measures in Maharashtra O9.7 Institutional preparedness and programmes to check climate-induced hazards in Maharashtra O9.7 Supply and Sanitation O9.7 Overview of Disaster Management Measures in Maharashtra O9.8 Overview of Disaster Management Mayorgrammes to check climate-induced hazards in Maharashtra O9.8 Supply and Sanitation O9.9 Overview of Disaster Management Measures in Maharashtra O9.9 Overview of Disaster Management Plan O9.9 Overview of Disaster Management Plan O9.9 Overview of Disaster Management For disaster management For disaster management For disaster management Plan O9.9 Overview of Disaster Management Plan O9.9 Overview of Disaster Management For Disaster Management Flan O9.9 Overview of Disaster Fectors Fecto | | Ch. | Title | 9 | | | Page | |-----|-------|---------|---------|--------------------------------------------------------------------------------------------|------| | 06 | 06 | for Imp | proving | ling Environments<br>Climate Resilience of<br>ns in Maharashtra | 50 | | | | 6.1 | Capac | ity building | 50 | | | | 6.2 | | ng Plan for the<br>ngencies | 53 | | | | 6.3 | | WASH Infrastructure for<br>ving Climate Resilience | 55 | | | | | 6.3.1 | Improved Sanitation<br>Systems for Flood<br>Prone areas and Areas<br>with High Water Table | 55 | | | | | 6.3.2 | Decentralized<br>Wastewater Treatment<br>Systems and their<br>Economics | 61 | | | | 6.4 | | -Private<br>erships (PPP) | 62 | | | | 6.5 | Social | learning | 64 | | | | 6.6 | Micro- | -insurance | 64 | | | | 6.7 | Invest | ment strategy | 64 | | | | | | | | | Ch. | Title | | | | | |-----|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----|--|--| | / | Findings and Conclusions | | | | | | | References | | 68 | | | | | Annexure 1 | Maps Representing Analysis<br>for different components<br>of Risk in WASH | 72 | | | | | Annexure 2 Analysis of Climate Parameters of Marathwada and Vidarbha Region, Maharashtra | | 73 | | | ## **List of Abbreviations** | CCVI | Climate Change Vulnerability Index | |--------|----------------------------------------------------| | CDRI | Climate Disaster Resilience Index | | CRI-LS | Coastal Risk Index for Local Scale | | DDMA | District Disaster Management Authority | | DMA | Disaster Management Act | | DMU | Disaster Management Unit | | EOC | Emergency Operation Centre | | FDRI | Flood Disaster Resilience Index | | FVI | Flood Vulnerability Index | | GoM | Government of Maharashtra | | GR | Government Resolution | | GSDA | Groundwater Surveys and<br>Development Agency | | GWP | Global Water Partnership | | HH | Household | | HR | Human Resource | | HVI | Household Vulnerability Index | | HWTS | Household water treatment and safe storage | | ICE | Information, Communication and Education | | IDRN | Indian Disaster Resource Network | | IMD | Indian Meteorological Department | | IRAP | Institute for Resource Analysis and Policy | | Lpcd | Litre per capita per day | | MDWS | Ministry of Drinking Water & Sanitation | | MHA | Ministry of Home Affairs | | MJP | Maharashtra Jeevan Pradhikaran | | MoH&FW | Ministry of Health and Family Welfare | | MSDMA | Maharashtra State Disaster<br>Management Authority | | MUWS | Multiple Use Water Systems | | | · · · · · · · · · · · · · · · · · · · | | MWSSB | Maharashtra Water Supply and Sewerage Board Act | |--------|-----------------------------------------------------------------| | NDMA | National Disaster Management Authority | | NDRF | National Disaster Response Force | | NGOs | Non-Governmental Organizations | | NVI | Net Volume Index | | O&M | Operation and Maintenance | | PHED | Public Health Engineering Department | | RDMC | Regional Disaster Management Centres | | RDPMU | Reform Support and Project<br>Management Unit | | RO | Reverse Osmosis | | Rs | Rupees | | SDMA | State Disaster Management Authorities | | SDRF | State Disaster Response Force | | SEC | State Executive Committee | | SeVI | Socio-Economic Vulnerability Index | | SPI | Standardized Precipitation Index | | SVI | Social Vulnerability Index | | ULB | Urban Local Body | | UNICEF | United Nations Children's Funds | | VOCs | Volatile Organic Compounds | | WASH | Water, Sanitation and Hygiene | | WEILAI | Water, Economy, Investment and<br>Learning Assessment Indicator | | WHO | World Health Organization | | WMO | World Meteorological Organization | | WSSD | Water Supply and Sanitation Department | | WSSO | Water Supply and Sanitation Organization | | WWRC | Watershed Water Resources Committee | | ZP | Zilla Parishads | | | | ## **List of Table** | Table No. | Title | Page | |-----------|-------------------------------------------------------------------------------------------------------------------------------------------|------| | Table 1 | Identified Factors Influencing<br>Climate Induced Risk in Rural<br>Water and Sanitation | 20 | | Table 2 | Matrix for Computing the Values<br>of Various Indices for Assessing<br>the Climate-Induced Risk in Water<br>and Sanitation in Maharashtra | 23 | | Table 3 | Computation of Various Sub-indices of Climate Risk Index and the Associated Variables for districts of Marathwada division | 35 | | Table 4 | Computation of Various<br>Sub-indices of Climate Risk Index<br>and the Associated Variables for<br>Districts of Vidarbha division | 39 | | Table 5 | Impact of Climate Induced<br>Hazard on WASH Sector | 46 | | Table 6 | Cost Norms for Implementing Piped<br>Water Supply Schemes in Maharashtra | 52 | | Table 7 | Proposed Structural and<br>Non-structural measures to<br>Reduce Exposure to Floods | 56 | | Table 8 | Proposed Structural and<br>Non-structural Measures to<br>Reduce Exposure to Droughts | 57 | | Table 9 | Various Measures to Reduce<br>Community Vulnerability to<br>Climate Induced Hazards | 58 | | Table 10 | Proposed Financial Provision for<br>Drinking Water Sector in Maharashtra | 59 | | Table 11 | Capacity Building Measures in WASH | 60 | | Table 12 | Training Plan with Theme, Objectives,<br>Topics and Target Audience | 64 | | Table 13 | Technologies Suggested for Toilets in Flood-Prone Areas | 68 | | Table 14 | No of Companies Active in WASH<br>Sector with their Budget | 74 | | Table 15 | Characteristics of Companies with Interest in WASH Sector | 75 | # **List of Diagram and Figure** | Figure No. | Title | Page | |------------|------------------------------------------------------------------------------------------------------|------| | Diagram 1 | The Framework for Assessment of Climate Risk | 5 | | Figure 1 | Climate-Induced Risk in Water,<br>Sanitation and Hygiene (WASH) in<br>Marathwada Region, Maharashtra | 32 | | Figure 2 | Climate-Induced Risk in Water,<br>Sanitation and Hygiene (WASH) in<br>Vidarbha Region, Maharashtra | 32 | | Figure 3 | Climate-Induced Risk in Water,<br>Sanitation and Hygiene (WASH) in<br>Marathwada Region, Maharashtra | 33 | | Figure 4 | Climate-Induced Risk in Water,<br>Sanitation and Hygiene (WASH) in<br>Vidarbha Region, Maharashtra | 33 | | Figure 5 | Strategic Framework for Climate<br>Resilient WASH Development | 47 | | Figure 6 | Organogram of Water<br>Resources Department,<br>Government of Maharashtra | 51 | | Figure 7 | Institutional Arrangement for Disaster<br>Management in Maharashtra | 54 | | Figure 8 | Mean and Coefficient of<br>Variation of Rainfall in the<br>Districts of Vidarbha Region | 87 | | Figure 9 | Mean and Coefficient of Variation of rainfall in the Districts of Marathwada region | 88 | | Figure 10 | Location of Drinking Water Source in Districts of Marathwada | 89 | | Figure 11 | Location of Drinking Water<br>Source in Districts of Vidarbha | 90 | | Figure 12 | Water Supply in the Rural Areas | 91 | # **List of Maps** | Map No. | Title | Page | |---------|----------------------------------------|------| | √lap 1 | Exposure of WASH Systems to Hazard | 85 | | Лар 2 | Climate Hazard in WASH Systems | 85 | | Лар З | Vulnerability of Communities to Hazard | 86 | | Лар 4 | Climate Risk in WASH | 86 | ## **Acknowledgement** The report contains the results and findings of a project "Capacity Building for Planning of Climate-Resilient WASH Services in Rural Maharashtra", which the Institute for Resource Analysis and Policy (IRAP) undertook in technical collaboration with and financial collaboration from the office of United Nations Children's Fund (UNICEF) in Mumbai, India and support from the government of Maharashtra. In this context IRAP and UNICEF would like to acknowledge the contributions and support of agencies and individuals at all levels who were involved in the successful completion of the project. We want to particularly thank the Water Supply and Sanitation Department, Government of Maharashtra and the State Disaster Management Authority, Relief and Rehabilitation Department, Government of Maharashtra whose support in the form of data and information was invaluable for the smooth execution of the project, as they provided the basis for several of the analyses carried out as part of it. We acknowledge the contribution of the residents of the villages of the Marathwada and Vidarbha regions in Maharashtra who participated in our surveys and provided us with primary data, which was vital for completing some of the analysis related to climate risk assessment. Thanks are due to Ms Rajeshwari Chandrasekar, Chief of UNICEF Field Office-Mumbai for her continued support and constant guidance throughout the course of this project. M. Dinesh Kumar Yusuf Kabir **Executive Director** WASH Specialist Institute for Resource Analysis and Policy UNICEF Field Office, Mumbai ## **Executive Summary** Capacity Building for Planning of Risk Informed Climate-Resilient WASH Services in Rural Maharashtra was a project undertaken by Institute for Resource Analysis and Policy (IRAP) in technical and financial collabora-Children's Fund (UNICEF) in Mumbai. Marathwada and Vidarbha. composite index for assessing climate induced risk in Water, Sanitation and The composite index developed for Hygiene; mapping the degree of risk in water and sanitation associated three sub-indices for assessing - the with climate hazards; identifying the magnitude of hazard; the exposure technical and institutional innovations of WASH systems to the hazard; required to make WASH interven- and the vulnerability of communities tions of the Government resilient to to problems associated with WASH climate-induced risks and their cost implications; and also, identifying the capacity building requirements of ters, which pertain to nature, technol-WASH sector line agencies to plan, design and execute climate resilient schemes for water supply and index indicatesthe highest climate-insanitation. included the following: climate risk assessment mapping; mapping of WASH institutions and programmes, including a systematic review of international best practices in climate-resilient planning and design of WASH interventions, with particular reference to the natural, socio-economic and institutional contexts in which they work; costing of climate resilient WASH interventions; and identificarequirements. approaches: a)Review of national and international literature on a range of and resilience in WASH to understand the factors that determine the degree WASH systems to such hazards, and vulnerability of communities that are dependent on these exposed WASH systems to the hazards;b)Collection of secondary data from various official agencies on natural, physical, socio-economic and institutional factors which determine the hazards. tion with the office of United Nations exposure and vulnerability;c) Collection of details of various Govern-India. The project covered two ment policies and programmes at the divisions of Maharashtra State, viz., national and State level for disaster reduction and climate resilience, and d) Collection of primary data from The project aimed at developing a sample villages/households. assessing climate risks in WASH has caused by climate hazard. The index uses a total of 28 different parameogy, socio-economic and institutional factors. The analysis based on this duced WASH risk in the districts of Parbhani (0.35), Osmanabad (0.31) The methodology used for the study and Nanded (0.31) in Marathwada. Akola and Washim districts of Vidarbha, with a score of 0.33 each, also fall in high risk bracket. Analysis of the factors causing high climate risks showed that improving water infrastructure can play a significant role in reducing the hazard and exposure. Import of surface water from water-rich regions of Western Ghats, which has a rich endowment tion of institutional capability building of river flows, would help reduce the hazard caused by meteorological droughts in Marathwada region. The project used the following Dependable sources of water for irrigation as well as water supply would be required for improving topics relating to climate-induced risk food and nutritional security, consequently reducing malnutrition and infant mortality. Only this can reduce of climate hazards, the exposure of the region's vulnerability to impacts of drought. Vidarbha region requires better drinking water supply and sanitationinfrastructure, despite better water endowment of the region with several perennial rivers. This could mean more number of large and medium surface reservoirs, and infrastructure for pumping and transporting this water to rural areas, and building distribution systems at the village level. If adequate and dependable source of good quality water is made available to the villagers, they may be motivated to go for individual HH level tap water connections, and also pay for the services. Structural and non-structural disaster risk reduction plans and measures exist in Maharashtra. However, they are not specific to risks associated with poor water supply and sanitation. The current Government measures to reduce drought exposure comprising structural (such as construction of dams, and small water harvesting structures) and non-structural ones(such as drought forecasting and warning) alone are unlikely to have any significant impact on reducing WASH related risks. On the contrary, they may increase the exposure of WASH systems to droughts. Similarly, the measures being proposed for reducing community's vulnerability to droughts through enhancing their awareness to drought-resistant crops and use of micro irrigation systems will not be effective in reducing WASH related risks. Nevertheless the non-structural measures such as strengthening the flood forecasting systems and creating additional infrastructure for flood warnings are very useful in reducing community vulnerability. Imparting training to the stakeholders involved in flood mitigation and management, organizing mock drills on flood rescue operations, etc., will be effective. A major reform initiative of Government of Maharashtra is the decision to change water supply norm for rural areas to 140 lpcd, which is at par with urban areas. The unit cost (Rs/m3 of water) of future investments for drought-prone regions of Marathwada and Vidarbha will have to be much higher than the water-rich Konkan and Western Ghat regions for ensuring sustainable water supply. This is A. essential as the local water endowment is limited in drought prone areas and has to be imported from exogenous sources. The current over-emphasis of the State Government on small-scale rainwater harvesting and water- C. shed development as measures for drought proofing isa matter of concern. These measures will not be effective in chronically drought-prone Marathwadaregion, given the paucity of rainfall, its yearly variation, aridity, and high degree of water exploitation. On the contrary, as being observed in drought prone areas of Maharash- E. tra, structures such as farm ponds can actually increase the exposure of WASH systems to droughts in rural areas. Farm ponds are observed to F. reduce the amount of water in the natural system that can be tapped by surface water and groundwater based G. Designing ecologically sound water sources in flood prone areas. supply schemes. Capacity building Water Resources Department and the Water Supply and Sanitation Department for reduce climate-induced hazards and exposure is important. The first and the foremost step is to build the skills of technical officers of MJP to design reliable and dependable rural water supply systems in areas experiencing climatic extremes. The following are the important areas for skill building: - Hydrological modelling of river - flood cushioning, - Designing reservoirs to increase multi annual storage of inflows prone areas; - regions to chronically drought-hit region of Marathwada; - Leakage detection and prevention in water distribution pipes of regional water supply systems; - Designing and operation of decentralized desalination systems; - sanitation infrastructure; and, - Designing, execution and operation of wastewater treatment systems designing and executing projects that The report has provided a detailed capacity building training plan for agency professionals toundertake these measures, comprising topics to be covered, objectives, and target These measures should be complimented by strengthening financial capabilities to execute the related infrastructure projects. The type of basins for climate change scenar- infrastructure projects required to improve climate resilience of WASH systems include: i)large reservoirs B. Designing surface reservoirs having multi-annual storage capacity, in flood prone areas for greater in regions experiencing high inter-annual variability in rainfall and streamflows; ii)building infrastructure for transfer of water from water-rich regions of the State to chronicalfrom catchments in drought ly drought-prone areas; iii)building decentralized desalination systems in coastal areas affected by severe Importing water from water-rich salinity and not served by piped water supply schemes; iv)building decentralized wastewater treatment systems for enabling reuse of water from domestic sector; v)rainwater harvesting in hilly andhigh rainfall hilly areas; vi) rehabilitation of dilapidated water distribution pipes in large water supply schemes; and, vii)raised hand-pumps, well-head protection walls, and raised latrines placed at a safe distance from ### Introduction climate risk sensitive zones of India (Vedeld et al., 2014). The State displays high degree of spatial heterogeneity in climate, hydrology, geology, geo-hydrology, soils and topography resulting in significant regional variations in the availability of water resources. The State has pockets with cold and humid climate as also large areas under hot and arid climate. Rainfall varies drastically from over 3000mm in the Western Ghats, nearly 2500mm in the coastal areas to less than 500mm in Marathwada region. The topography varies from coastal plains to the hilly areas and high mountain regions of Deccan plateau (UNICEF/IRAP, 2013). With these unique natural conditions, compounded by inadequate water and sanitation infrastructure and presence of large areas of the State succumb to impacts summer months, with no major runoff of climate extremes. Large parts of the State, especially the hot and arid areas of Marathwada and Vidharba, experience high annual and seasonal variation in weather conditions, particularly precipitation and temperature. Wells are the main water source for domestic supplies in rural areas in the hot and the arid regions. In these regions, water supply systems are threatened during drought years, as aguifers do not get adequately recharged. Drinking water shortage is felt even before the onset of summer, with agriculture claiming most of the underground water. In the high rainfall regions of Western Ghats, due to steep terrain and hard rock geology, very little water gets stored Maharashtra is in one of the most populations living under poverty, vast on the surface and in aguifers. In the and recharge inducing showers, wells dry up and there is acute shortage of drinking water. In such situations people tend to use contaminated water from non-conventional sources for washing, bathing etc., at the cost of personal hygiene. Though there is sufficient water available in large reservoirs located in high rainfall regions of the State, even during drought years, adequate infrastructure to transport this to water-deficit areas is absent. In the absence of adequate water to meet all needs, sanitation is a major casualty in all these areas. Even when households (HHs) have access to toilets they are abandoned due to acute water shortage. A small geographical area of health risk. Unsafe open disposal of Maharashtra, estimated to be 0.23 m. ha, is prone to floods. Many parts Given the high prevalence of open of the State suffer from flash floods defecation and disposal of animal during monsoon, whose effects are compounded by poor drainage defecation in urban areas (51.9%) systems, especially in cities and the flood waters with faecal matter towns. Floods also affect the plain areas of Konkan, which receive of water borne diseases by contamiexcessively high rainfall. Heavy rains nating groundwater used for drinking and flash floods threaten rural HHs' access to water supply, as only 42.9% of the HHs have access to drinking water within the premises and a much smaller percentage (20.6) has access to treated tap water in their dwelling premises. Poor adoption of improved WASH sector of Maharashtra. The sanitation facilities in the rural areas efforts were to converge these (44.1%) (MoH& FW, 2016) and capabilities with existing national and poorly-designed toilets, which do not State flagship programmes on rural take the natural and socio-econom- water, sanitation, and water resource ic factors into consideration in their management. The capabilities so design, increase the flood induced devised were to subsume proper risk animal waste is another risk factor. waste in rural (44.2%) and open also induce health risks in the form purpose without treatment. This project aimed at building institutional capacities to plan, design and develop climate-resilient water and sanitation systems in the rural informed planning, based on climate risk assessment in two distinct regions of the State. The project was undertaken by Institute for Resource Analysis and Policy (IRAP) in technical collaboration with and financial support from UNICEF-Mumbai. It covered two distinct regions of Maharashtra with respect to natural, physical, socio-economic and cultural environments. The regions are: a) Marathwada - part of the Deccan plateau which is hot and semi-arid and drought prone, but agriculturally prosperous; and, 2) Vidarbha - hot and semi-arid, with hilly and undulating terrain, dominated by socially and economically backward, tribal communities. These communities mostly practice rain fed and subsistence farming, often resulting in high rate of migration from rural areas due to perennial water shortage for agriculture and other uses. ## **Objectives of the Project** The project had the following national as well as State Government 4. Identify capacity building requireobjectives: - 1. Identify and map magnitude of various risks in water supply and sanitation in the context of climate variability and change; - 2. Identify technical and institutional innovations required in the existing State - water and sanitation programmes. to make water supply and sanitation interventions resilient to climate-induced risks - 3. Assess cost implications of making various water supply and sanitation interventions climate resilient in the - ments of various line agency personnel in water and sanitation sector to enable them plan, design and execute climate resilient schemes relating to water supply and sanitation ## **Conceptual and Analytical Frameworks for Assessing Climate Risks in WASH Sector** ### Climate Risk Assessment and Mapping Climate risk is composite of hazard, tion. This could be due to one or more Lack of financial resources with exposure and vulnerability (WMO. 2014). The degree of risks in water supply and sanitation induced by climate variability and change depends on a variety of cultural, economic, environmental, institutional, natural, physical, and social factors. For development of climate-resilient WASH programmes in any locality there is a need to understand factors influencing climate risks and the local vulnerability to these factors are important (source: based on GWP & UNICEF. 2014; UNICEF, 2016). The magnitude of climate induced hazards to WASH system is determined by a host of natural and physical factors. The hazards can be in the form of hydrological droughts, floods, cyclones, waterlogging of low lying areas, severe contamination of surface water bodies and shallow aguifers with biological matter and pathogens, groundwater depletion with resultant drying up of reservoirs, and the like. For instance, low to medium rainfall regions may experience high year to year rainfall variability, whereas there could be high dependability in high rainfall regions. In hard rock areas of Deccan plateau, which also coincide with low to medium rainfall region, monsoon failure results in groundwater droughts. The degree of exposure of WASH systems to climate hazards is determined by a range of natural, physical, socio-economic and institutional factors. The exposure could be in the form of reduced water supply from the public system for domestic needs, including personal hygiene and sanitaof the following reasons: - ☐ Reduced water availability in natural system because of hydrological drought; - □ Breakage/damage to water supply pipelines during heavy storms, cyclones and floods; - Damage to sanitation infrastructure (toilets, sewerage systems) due to cyclones and floods: - □ Damage to improved water sources and sanitation facilities due to flooding and cyclones; - Contamination of potable water carried through pipes from sewage due to pipeline breakage, - Contamination of water in shallow drinking water wells. The degree of community vulnerability to climate induced risks in water supply and sanitation is determined by a whole range of natural, social, cultural, economic and institutional factors (Kabir et al., 2015). This vulnerability can be in the form of - - Lack of alternate sources of fresh water private wells, ponds and hand pumps for drinking, domestic and livestock uses: - ☐ Absence of buffer storage of water at the household level: - Lack of facilities for treatment of contaminated water for potability; - communities and HHs to create temporary infrastructure for sanitation; - ☐ Absence of information and community systems available to spread warnings about incoming floods, cyclones, potential water contamination, damage to water infrastructure, spread of water borne diseases, and the areas likely to be affected; - □ Poor or lack of access to medical facilities to protect members of the communities from water borne diseases; and - ☐ Absence of social ingenuity within the communities to overcome crisis situations arising out of WASH hazards. Maharashtra displays a wide variability in its natural environment (climate, hydrology, geology, geohydrology, soils and topography) across regions. Weather pattern are also noticed to vary between years. This variation results in the occurrence of climate-induced hazards such as hydrological droughts, groundwater depletion, waterlogging, and floods. The low to tion, as also sanitation infrastructure, medium rainfall regions experience higher variability, which poses possibility of meteorological droughts. The low to medium rainfall regions with hard rock aguifers very frequently experience groundwater droughts as a result of monsoon failure. This phenomenon influences water availability and its quality in natural system for water supply purposes. This in turn affects quality of drinking water and its availability for domestic use. also has varying impact on environmental sanitation exposure. For instance, shallow groundwater areas with sandy soils are most exposed drinking water wells from faecal matter due to poor sanitation during floods. The natural environment also determines the community vulnerability to health problems associated with poor sanitation and hygiene through waterlogging, flooding, changes, etc. For instance, vectorborne diseases spread faster in cold and humid climates as compared to hot and arid ones. Under poor sanitawater-based diseases spread faster in high rainfall, humid, plain areas as compared to low rainfall and arid areas with good natural drainage. There is also a wide variation in the physical factors governing the supply of water (with respect to space and time) and access to water supply and sanitation facilities across Maharashtra. Water control (flood control dams, reservoirs for water storage), distribution and supply infrastruc- ture vary in terms of size and other (IRAP, GSDA & UNICEF, 2013). technical features. To add to this sanitation systems varies in terms of their ecological soundness - from simple, single pit latrines to double pit latrines to septic tanks to household latrines connected to sewerage systems. The type and characteristics of water control, supply and distribuinfluences the magnitude of climate induced hazards. With this there is the likelihood of WASH systems getting exposed to these natural hazards. The socio-economic and cultural profiles of the people affected by lack of access to water sources, sanitation facilities. Use of water for domestic and productive needs, also vary between the regions. This variation determines not only the exposure of the communities to climate induced The difference in natural environment water-related hazards, but also the vulnerability to these hazards. As to the exposure, poor communities living in low-lying areas, especially in cities and towns, generally fall to bacteriological contamination of victim to flooding and waterlogging problems and face the risks associated with water contamination and poor sanitation. This is mainly due to lack of proper drainage and sewerage networks. The poor communities in remote rural areas and urban fringes also bear the brunt of water scarcity water contamination, temperature caused by droughts, which result in poor personal hygiene and sanitation. This is because most of them do not enjoy individual household water connections and instead are served tion conditions, both water-borne and by local sources such as hand pumps. public wells and stand posts, which become dysfunctional during such natural events. Generally these areas also suffer from lack of adequate infrastructure for water transportation through tankers etc. Apart from compromising on personal hygiene needs, members of such HHs are generally unwilling to adopt improved toilets and resort to open defecation, as fetching large amount of water from distant sources for flushing toilets etc., increase their hardship There is a linkage between socio-economic/cultural profiles and 'vulnerability', during natural hazards. The socially and economically backward communities often receive the emergency aid from the local Governments, aid agencies, and NGOs in the form of clean drinking water, medicines, water purifiers, water treatment systems, temporary shelters, food, etc., very late owing to types of localities they live in. Because of this they are more vulnerable than people living in rich localities. On the other hand, certain cultural taboos come in the way of socio-economically rich communities from offering the most needed water supply and sanitation facilities support to their counterparts from backward communities during emergencies. Enhanced institutional capabilities in WASH sector can greatly reduce the exposure and vulnerability of the communities to climate induced natural hazards through a variety of ways and means. These include the followina: - 01. Planning, design and building of river valley projects for water security and flood control; - 02. Designing and building climate-resilient water supply and sanitation - 03. Designing and executing early warning systems for disasters (floods, cyclones, intense storms, etc.): - 04. Employing an effective 'disaster response force'; promoting improved hygiene practices; and - 05. Educating the masses about precautions to be exercised during disasters, with respect to use of water for drinking, sanitation and hygiene practices. the institutional environment with respect to the capability of State institutions in the WASH sector across regions, the overall institutional environment and capability would change from region to region, owing to the presence of local institutions and external agencies promoting WASH activities in certain localities. This can have implications for both exposure to climate-induced hazards and to its vulnerability. - Though there isn't much variation in 03. How various socio-economic factors determine exposure of entire WASH system and vulnerhazards: and - ence exposure and vulnerability of communities to climate induced hazards in water and sanitation - Based on this theoretical understanding, along with a quantitative and qualitative mapping of the prevailing ability of the communities to water and climate conditions with respect to natural environment of physical systems related to water 04. How institutional factors influ- and sanitation, the following factors were assessed and mapped for these regions: - Socio-economic profile; - ☐ Institutional environment prevailing in the two distinct regions of the State: - Degree of hazards; - Degree of exposure of communities and the vulnerability to water supply and sanitation hazards. A composite index was developed to assess the overall 'climate-induced risk' in water and sanitation, which captures the degree of hazard, exposure, and vulnerability. The values of this index were computed for two distinct 'regions' - each one characterized by a unique natural, physical, socio-economic and institutional characteristic. The computed values were mapped on a GIS platform. Diagram 1: The Framework for Assessment of Climate Risk From the foregoing discussions, it is quite evident that for assessing climate induced risks in water and sanitation there is a need to develop theoretical understanding of the following: - 01. How various natural (hydrology, climate, geology and topography) factors determine the degree of occurrence of climate hazards in different regions; - 02. How various physical factors (types and characteristics of water and sanitation infrastructure) influence both the magnitude of climate-induced hazard and the exposure of communities to these hazards; ## 02. Mapping of WASH Institutions and Programmes The existing Government institutions 02. Prevent or reduce the exposure and programmes in WASH sector were mapped in relation to their ability to - - 01. Check climate-induced hazards, including hydrological droughts, floods and waterlogging, groundwater contamination and groundwater mining through various technical and institutional measures; - of WASH systems to climate induced hazards such as hydrological droughts, floods, cyclones, waterlogging through various planning and design innovations, and technological and institutional measures; and, factors climate risk estimates are for Maharashtra. most sensitive to. 03. Target the WASH programmes for Following these assessments, which the benefit of the most vulnera- led to identification of institutional ble communities, and implement and programmatic inadequacies, a measures to reduce their vulner- systematic review of international best ability to climate induced hazards. practices in climate-resilient planning and design of WASH interventions The focus was on the unique features was undertaken, with particular referof these institutions (their structure, ence to the natural, socio-economic legal and regulatory powers, finance, and institutional contexts in which HR capability, policies and strate- they work. All these helped to identify gies) and programmes (engineering the key technical and institutionsolutions, size, target areas, invest- al interventions for climate resilient ments) that enable them to alter the WASH programmes that are suitable ## Costing of Climate Resilient WASH Interventions After identifying the institutional improvements and new technical 'climate-resilient', the cost estimates cal systems1. of introducing various technological change needs and required improve- solutions in WASH were carried out. ments in current technological strat- In costing, the focus was on the new egies and engineering interventions structural features, capacity building for making the WASH systems and operational aspects of the techni- ## 04. Identification of Institutional Capability **Building Requirements** suggests improvements in technical ventions. strategies and engineering solutions An action plan for training and for promoting climate-resilient WASH capacity building in the WASH sector programme. The emphasis here was was developed based on the identi- on planning, design, execution, operafied institutional changes. The plan tion, and management of those inter- <sup>1.</sup> This covered water storage infrastructure such as dams (including small dams), water conveyance and distribution systems, roof water harvesting systems, artificial recharge systems, household level water storage tanks, decentralized water treatment systems, various types of latrines, and decentralized sewage treatment and disposa ## **Climate Risk and Resilience: Review of Literature** ## 01. Vulnerability and Risk Induced by Climate Hazards in WASH A review of available literature was undertaken to - - ☐ Identify the factors that influence ☐ How these factors influence the - Climate-induced hazards in water, sanitation and hygiene (WASH): - Exposure of water and sanitation systems to the hazards; - Vulnerability of communities to the problems associated with poor water supply and sanitation resulting from such exposure; - magnitude of hazards, and degree of HHs exposure and vulnerabili- The review is grouped under two themes: 1) regional studies on impact of climate risks for WASH sector; and 2) development and application of vulnerability indices to assess climate related hazards. #### Studies on Climate Risk in WASH evaluate the risk during sudden reduc- reliance on surface sources may have different research studies relating tion in water supply in the Monterrey enhanced the water supply system's to multiple natural hazards assess-Metropolitan Area posed by climate exposure to climate hazard. It is argued ment (e.g. flood, storms, droughts threats and the vulnerability of its that surface water is more sensitive to etc.) affecting the same region in water supply system. The authors use climate variability than groundwater, different time periods. This study long-term precipitation, water supply, especially in the short term, as low mainly focuses on the identification of and water availability data to show precipitation often results in scarce multiple hazard types using different that the region has been subject to surface runoff and reservoir inflows. recurring period of exceptionally low The study points to the existence precipitation and scarce surface water of substantial water crisis risk in the ment methodologies that capture availability. The study identifies that region due to climate variability and during 1998-2013 the water supply its water supply system vulnerability. system almost collapsed as reservoirs Climate change is expected to intenfunctions and indicators at the regional have deficient water due to abnormal dry weather condition. Precipita- activity will amplify the consequences tion data for the region was used to of a future water crisis. The authors compute the Standardized Precipitation Index (SPI) to detect exceptionally dry or wet periods in the history. The Net Volume Index (NVI) was used to analyze vulnerability of the water supply systems by measuring the utilization rate of the system's effective in time. sify this risk, while continued growth future due to climate change. assessment methodologies for different types of risks used by different storage capacity at a particular point organizations for development of a Satta et al. (2016) have developed single multi-risk methodology for an index based methodology for Sisto et al. (2016) in their study The authors argue that increased climate change. This study reviews qualitative and quantitative approaches. The study reveals different assessvulnerability of multiple targets to natural hazards through vulnerability and local scale. The overall conclusion from the study is that multi-risk approaches do not capture the effects argue that the risk associated with of climate change. They mostly rely water shortages would increase in on the analysis of static vulnerability. The main challenge is to develop a comprehensive list of indicators that is Gallina et al. (2016) review existing dynamic enough to account for different climate induced hazards and risks. assessing climate related hazards. This regional coastal risk index was applied to a coastal area in Mediterranean Morocco at a regional scale. It provides a useful tool for local coastal planning and management. The tool explores the effects and extensions of the climate related and combining hazard, vulnerability, and exposure variables to identify areas where the likelihood of risk is relatively high. A panel of scientific experts and local policy makers were involved for assigning weights to each of coastal risk index indicators. The experts were asked to assign a score between 1 and 5 (5= high risk, 1= low risk) which described the relative contribution of each variable to the hazard, exposure and vulnerability. The results were presented on a GIS (geographical information system) platform. The study provided a set of maps that allowed identification of areas having higher risk from climate related hazards. A handbook prepared by WaterAid and NIRAPAD (2012) focuses on safe water supply, sanitation and hygiene practices for rural areas in the wake of climate change. It highlights the relation to climate change. Further, it discusses about the existing national policy structures and institutional systems for ensuring safe water, sanitation and hygiene practices as well the strategies to cope with the climate change disaster induced uncertainty. The strategies to manage climate change and disaster induced uncertainties are as follows: - 01. Use of appropriate and effective technologies to ensure water supply, sanitation services and hygiene practices in the changing circumstances. The current and the traditional sources of water, and traditional technologies should be assessed to understand whether and to what extent they could serve the purposes. - 02. Cost sharing through economic services. Disaster risk and climate risk will increase the cost of safe water supply and sanitation services. Therefore, service pricing should follow economic principles and make the consumers share a part of the cost. - basic concepts of the disaster risks in 03. Create cost-benefit awareness, as rising costs of the services may negatively influence the demand for water at household and personal levels. - 04. Subsidise the poor and disadvantaged HHs as they may find it difficult to bear the increasing cost of the services. Therefore. affordability should be carefully assessed in promoting new technologies. It is important to ensure that the economic pricing doesn't deprive the disadvantaged and the poor HHs. - 05. Accountability and community participation should be involved in both planning and implementation process. They should be built in at national level planning process. - 06. There is a need for the local government bodies to take part in supply and distribution of water and sanitation programme. Private and voluntary agencies could also participate in their efforts. ## 01.2 Various Indices on Climate Vulnerability and Resilience | Study | Study<br>Region | Vulnerability<br>Index | Indicators | Methodology and<br>Outcome | |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | A) Multiple Use Water Services to Reduce Poverty and Vulnerability to Climate Variability and Change: A Collabora- tive Action Research Project in Maharashtra, India (IRAP, GSDA & UNICEF, 2013) | Maharashtra | Multiple<br>Use Water<br>Systems<br>(MUWS)<br>Vulnerability<br>Index | Twenty parameters were identified and grouped under six sub- indices: A. Water Supply & Use (Access to water supply source, Frequency of water supply, Ownership of alternative source "owned", Access to other alternative source, Capacity of domestic storage systems, Quantity of water used, Quality of domestic water supplies, Total monthly water bill as a percentage of monthly income), B. Family Occupation & Social Profile (Family occupation, Social Profile, Health expenditure), C. Social Institutions and Ingenuity (Social institutions and Ingenuity), D. Climate & Drought Proneness (Climate of the regions, Aridity and drought proneness), E. Condition of Water Resources (Surface and groundwater availability in the area, Variability on resource conditions, Seasonal variation, Vulnerability of the resource to pollution or contamination) and F. Financial Stability | The MUWS Vulnerability Index is composed of six sub-indices which were identified based on expert knowledge and literature review. For computing the index, a survey was undertaken covering rural HHs in Maharashtra. The index has a maximum value of 10.0 representing lower vulnerability and minimum value of 0.0 representing higher vulnerability. | | B) An index based methods to assess the risks of climate related hazards in coastal zones: The case of Tetouan (Satta et al., 2016) | Coastal zone<br>of Tetouan<br>Mediter-<br>ranean<br>Moroccan<br>Coast | Multi-Scale<br>Coastal Risk<br>Index for<br>Local Scale<br>(CRI-LS) | Nineteen variables were categorized under three sub-indices: A. Coastal Hazards (Sea level rise, storms, Mean annual max daily precipitation, Droughts, population growth, Tourism arrivals), B. Coastal Vulnerability (Landforms, Coastal slope, Historical shoreline change, Elevation, distance from the shoreline, River flow regulation, Ecosystem health, Education level, Age of population, Coastal protection structures), C. Coastal Exposure (Land cover, Population density) | A panel of scientific experts and local policy makers were involved for assigning weights to each identified indicator for developing a coastal risk index. The experts assigned a score between 1 and 5 (5= high risk, 1= low risk) which described the relative contribution of each variable to hazard, vulnerability and exposure. The index values were used to prepare maps for identification of coastal areas with relative higher risk from climate related hazards. | | Study | Study<br>Region | Vulnerability<br>Index | Indicators | Methodology and<br>Outcome | |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | C) The Socio-Economic Vulnerability Index: A pragmatic approach for assessing climate change led risks-A case study in the south western coastal Bangladesh (Ahsan and Warener, 2014) | Seven<br>unions<br>of Koyra<br>Upazilla,<br>South-<br>Western<br>Coastal<br>Bangladesh | Socio-Eco-<br>nomic Vulner-<br>ability Index<br>(SeVI) | Five domains consisting of 27 indicators: A. Demographic (Population density, Percentage of old and children in sample, Male-Female ratio in sample, etc.), B. Social (Percentage of illiterate HHs in sample, Percentage of HHs not having brick built house in sample, etc.), C. Economic (Percentage of HHs depends on natural source for their income (fisheries, agriculture etc.) in sample, Percentage of consumption expenditure on food in sample, etc.), D. Physical (Percentage of HHs not getting electricity, Percentage of HHs not having sanitary latrine, Percentage of HHs using ponds, etc.), E. Exposure to Natural Hazards(Percentage of HHs not willing to go cyclone shelter, Percentage of HHs not having shelter in cyclone shelter or with neighbours, etc.) | The SeVI was developed using five domains which include physical, economic, social, demographic and exposure to natural hazards. Both primary and secondary data were used for development of the index. Indicators were identified based on the Focus Group Discussions (FGD) and through administering a questionnaire on 60 HHs from each region. The experts gave a relative weightage to each indicator, between 1 and 5 on the basis of importance of each indicator. | | D) Climate<br>Change and<br>rural communi-<br>ties in Ghana:<br>Social vulnera-<br>bility, impacts,<br>adaptations<br>and policy<br>implications.<br>(Dumenu and<br>Obeng, 2016) | Four ecological zones of Ghana | Social Vulner-<br>ability Index<br>(SVI) | Six indicators are grouped under three domains: A. Demographic (Household size, Literacy), B. Economic (Diversified sources of income, Climate sensitive occupation) and C. Social (Access to climate change information, Dependence on forest resources) | Authors use six demographic, social and economic indicators in assessing social vulnerability to climate change. Indicators were identified through expert judgment. Primary data was collected through questionnaire and interviews of 196 HHs in 14 rural communities. Qualitative and quantitative tools were used for data analysis. | | E) Measuring household vulnerability to climate-induced stresses in pastoral rangelands in Kenya; implications for resilience programming (Opiyo et al., 2014) | Turkana<br>County,<br>North-<br>Western<br>rangelands<br>of Kenya. | Household Vulnerabil- ity Index (HVI) matrix (Vulnerabili- ty= Adaptive capacity – (Sensitivity+- Exposure) | Twenty-seven indicators have been identified under three major domains A. Social Vulnerability variables (Sex of HH head: female headed, Age of HH head: 50+ years, Experiences in the area: less than five years, HH size: more than 5 persons etc.), B. Economic variables (Non-firm income: HH with no firm income, Herd size in TLU: own less than 2 TLUs, Herd structure: no milking herd, Distance to Market: more than 10 km away, etc.), C. Environmental variables (Climate change: experiencing change, Temperature: experiencing increase, Drought: noticed increasing events, Flood: notice change, etc.) | The study uses various statistical and economic tools to measure vulnerability in the region. Twenty-seven socio-economic and biophysical indicators were considered which were identified through questionnaire survey of 302 HHs. Principal Component Analysis (PCA) method was used for assigning weightage to each identified indicator and compute HVI to classify HH according to their level of vulnerability. | | Study | Study<br>Region | Vulnerability<br>Index | Indicators | Methodology and<br>Outcome | |----------------------------------------------------------------|---------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Disaster Bang | Dhaka city,<br>Bangladesh | Climate<br>Disaster Resil- | The authors have identified 125 variables under 25 parameters in five main domains. | Authors use Climate<br>Disaster Resilience | | Resilience of Dhaka City Corporation: An Empirical | | ience Index<br>(CDRI) | A. Physical (Electricity, Water, Sanitation and solid waste disposal, Accessibility to roads, Housing and Land use) | Index (CDRI) for analyz-<br>ing risk for 10 zones of<br>Bangladesh. The data<br>was collected by admin- | | assessment<br>at Zone Level<br>(Parvin and | | | B. Social (Population, Health, Education and<br>Awareness , Social Capital , Community<br>preparedness during a disaster) | istering questionnaire on<br>the planners involved in<br>preparation of Detailed | | Shaw, 2011) | | | C. Economic (Income, Employment, Household assets, Finance and saving, Budget and subsidy) | Area Plan (2009) in Dhaka city. | | | | | D. Institutional (Mainstreaming of DRR and CCA, Effectiveness of cities crisis management framework, Knowledge dissemination and management, Institutional collaboration with other organizations and stakeholders, during disasters, Good Governance. | | | | | | E. Natural and related Parameters (Intensity/<br>severity of natural hazards ,Frequency of natural<br>hazards , Ecosystem services , Land use in<br>natural terms , Environmental policies | | | G) Mapping<br>Vulnerability | Tajikistan | Climate<br>Change | Three determinants (Adaptive capacity, Sensitivity and Exposure) consists of 23 indicators | Authors map areas which are most vulnerable to | | to Climate<br>Change<br>(Heltberg and<br>Osmolovskiy,<br>2010) | | Vulnerability Index (CCVI = Adaptation + Exposure +Sensitivity /3) | A. Adaptive Capacity (HH consumption per capita, Share of population with higher education, Negative Herfindahl index of income diversification, Share of HH having trust in people etc.), | the impacts of climate change and variability. Vulnerability index has been derived as a function of the exposure to climate | | 2010) | | | B. Sensitivity (Negative of the amount of irrigated land per capita, Herfindahl index of agricultural land use diversification, share of HHs depending on agriculture, Share of population under age 5etc), | change variability and<br>natural disasters; sensi-<br>tive to impacts of that<br>exposure and capacity<br>to adapt to ongoing and | | | | | C. Exposure (Variability of average temperature in month, Variability of average precipitation in month, Range between maximum and minimum average temperature in month, Frequency of extremely hot months, when average temperature higher than 300C, Frequency of extremely cold months etc.) | future climate changes. The index can be used for decision making about adaptation responses that might benefit from an assessment of how and why vulnerability to climate change varies regionally. | | Study | Study<br>Region | Vulnerability<br>Index | Indicators | Methodology and<br>Outcome | |--------------------------------------------------------------------------------|--------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------| | H) Water and<br>Poverty in | Rural areas of China | Water,<br>Economy, | Twenty-three sub-components identified under nine components | The paper describes the theoretical developmental | | Rural China: Developing an Instrument to | | Investment<br>and Learning<br>Assessment | A. Water Resources (Primary HH water source for HH use and limited HH agricultural use, etc.), | of a multidimensional,<br>water-focused, thematic<br>indicator of rural poverty. | | assess Multi<br>dimensions<br>of Water | | Indicator<br>(WEILAI) | B. Water Access (Is water affordable if HH were required to pay, Distance travelled to collect water, Time needed to collect water etc.), | It is based on the identi-<br>fication of indicators,<br>assigning weightage to | | and Poverty<br>(Cohen and<br>Sullivan, 2010) | | | C. Water resource management capacity (Existence of a water user group in AV and awareness of it, HH's participation in any type of water management/use etc.), | indicators, methodology,<br>field studies and statis-<br>tical analysis. For the<br>purpose, 534 HHs across<br>71 villages in China were | | | | | D. Sanitation (Type of sanitation facilities, HH perceptions of their sanitation etc.), | surveyed. PCA was used for assigning weightage to | | | | | E. Education (Children access to education,<br>Student/teacher ratio, Teachers level of training), | each indicator. Based on<br>the assigned weightage,<br>the vulnerability index was | | | | | F. Health and Hygiene (Access to healthcare, Affordability of healthcare etc.), | developed. | | | | | G. Food Security (Area of arable land HH uses/<br>had access to, HH is a net food consumer or<br>exporter, etc.), | | | | | | H. Environment (Degree of erosion due to environmental deterioration, Secondary measures of deteriorating environment around HHs: insects etc.) | | | I) Quantitative<br>Assessment of | North-East<br>Maritime | Flood Vulner-<br>ability Index | Twenty-four indicators identified in three sub domain: | Focus is on development of vulnerability frame- | | Vulnerability to<br>Flood Hazards<br>in Downstream<br>Area of | Region, Yoto<br>District | District | A. Exposure (Flood frequency, Flood Duration, Flood water level, Closeness to river body, Altitude), | work and distinguishing<br>three main components<br>(exposure, susceptibility<br>and resilience), to allow an | | Mono Basin,<br>South-Eastern<br>Togo: Yoto<br>District (Kissi<br>et al., 2015) | | | B. Susceptibility (Percentage of Education: no schooling, Household size(more than 10%), Female headed, Farmers, Poor building material, HH with affected land, Community Awareness, HH coping mechanisms, Emergency services, HH past experience, HH preparedness), | in depth analysis and inter-<br>polation of indicators. For<br>normalization, the actual<br>data was transformed<br>to a standardized score<br>(between 0 and 1). | | | | | C. Resilience (Percentage of Warning systems,<br>HH perception on flood risk, HH evacuation<br>capability, HH flood training, Recovery capacity,<br>Recovery time, Long term resident 10 year +,<br>Environmental recovery) | | | Study | Study<br>Region | Vulnerability<br>Index | Indicators | Methodology and<br>Outcome | |-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | J) Identifying and Visualizing Resilience to Flooding via a Composite Flooding Disaster Resilience Index (Perfrement and Lloyd, nd) | Sixteen<br>municipal-<br>ities in the<br>Greater<br>Amsterdam | Flood Disaster<br>Resilience<br>Index (FDRI) | The FDRI has developed 11 indicators in four domains: A. Social Environment (Age, Transportation Access, Net Migration), B. Built Environment (Medical Capacity, Transportation network), C. Natural Environment (Runoff, Soil Permeability, Elevation (water level)), D. Economic Environment (Employment, Wealth, Economic damage for flood volumes) | Study developed a composite flooding disaster resilience index (FDRI) by aggregating individual resilience indicators under social, natural, built and economic categories. Sixteen municipalities across the Greater Amsterdam region were surveyed. The FDRI is a single figure summarizing a region's status on 11 indicators that influence the resilience of a region to natural hazards. A panel of 18 flood experts were asked to rate each indicator based on its correlation to the resilience level. Each indicator was ranked between 1 and 4. | ## 02. Innovations and Best Practices for Improving Climate Resilience in WASH: Global Review ### 02.1 Managing Water Quantity Small scale rainwater harvesting is et al., 2006). Regions with lower being promoted as a measure for mean annual rainfall experience higher improving climate resilience in all variability and vice versa (Sharma, sectors of water use, particularly 2012). Hence, in regions with lower agriculture and domestic water supply mean annual rainfalls, rainwater (see, Barron, 2009: p X). However, harvesting as a dependable source of such prescriptions are not based on water is likely to be low. a scientific evaluation of its effectiveness in the physical environment. In the Indian context, it has been vis-à-vis hydrology, geology, geohydrology, topography and soils. Globally there is no study on its effectiveness likely to experience climate extremes. to provide drinking water to the household, irrigation and the like. The Evaporation is an important factor systems used for harvesting rainwater also spend more time on educational flood protection. exceed a threshold. This threshold would vary according to nature of Soil infiltration capacity can be a the soil and land cover of the area. However, the actual runoff rates and sandy loam soils, the infiltration would depend on strength of the capacity of the recharge area can correlation between rainfall and runoff be sustained through a continuous in a given basin. This relation weakens removal of soils. But clayey soils have if there is a major year to year change inherent limitations. Results obtained in rainfall intensity and pattern (Kumar from short-term infiltration tests profiles. generally found that a greater magnitude of annual rainfall means more rainy days and smaller magnitude of in regions that currently experience or annual rainfall means less rainy days (Pisharoty, 1990). This relationship holds true for the geographical area In regions with high rainfall, rainwa- of Maharashtra as well. Fewer rainy ter harvesting increases climate resil- days also means longer dry spells ience because it expands the capacity and thus greater losses from evapoto store water. It is also an effective ration for the same region. Higher option particularly in areas where intensity of rainfall can lead to greater annual rainfall has poor reliability and runoff occurring in short durations. water supply infrastructure is poorly limiting the effective storage capacity developed, as in sub-Saharan Africa. of rainwater harvesting systems to Rainwater is collected from rooftops almost equal their actual storage size. are being managed and operated at mance of small water harvesting the household level. Along with provid-bodies. A significant proportion of the ing a safe and sufficient water supply, annual potential evaporation occurs rainwater harvesting also reduces during the rainy season, especially burden of fetching water. HHs can in the semi-arid and arid areas. High evaporation during the rainy season and social activities. Multiple years of means losses from surface storage storage may be required to bridge low structures. It also means a faster rate rainfall periods. This will build in redun- of soil moisture depletion through dancy for possible low rainfall and both evaporation from barren soils and longer dry seasons. It also ensures evapo-transpiration, which increase the rate and quantum of soil infiltration. This reduces the generation For runoff harvesting, rainfall has to potential of runoff (Kumar et al., 2006). limiting factor for recharge. In sandy carried out in dug wells in Andhra Pradesh, in two different soil conditions, showed that the infiltration rate turns out negligible (< 0.60 mm/hour) within 10 minutes of starting the test in the case of silty clay, whereas infiltration stabilizes at a rate of 129.1 mm/ hour up to the initial 25 minutes in the case of sandy loam (NGRI, 2000). If the infiltration rate approaches zero fast. it will negatively affect the recharge efficiency of percolation ponds. Thin soil cover has a low infiltration (Muralidharan and Athavale, 1998), the extent of the problem would be larger in hard-rock areas (ideal for percolation ponds) with thin soil cover. Based on several infiltration studies. Dickenson and Bachman (1994) have shown that the rate of infiltration declines to a minimum value within 4-5 days of ponding. This also will have adverse effects on the performance of structures built in areas experiencing flash floods and high evaporation rates. The solutions for this would be wetting which adversely affects the perfor- or drying of pond-beds through the regulation of inflows. > For artificial recharge, storage potential of an aquifer vis-à-vis the additional recharge is determined by the characteristics in deological formations, and the likely depth of the dewatered zone. In hilly watersheds, the area available for cultivation is generally very low, keeping agricultural water demand low. At the same time, the surface water potential available for harvesting is generally high due to high rainfall and runoff coefficients. On the contrary, in valleys and plains, the area available for cultivation increases, raising agricultural water demand. The surface water potential available for harnessing is generally low in the plains due to lower rainfall, and low runoff coefficients owing to mild slopes, high PET, and deeper soil #### 02.2 Managing Water Quality - A. Household water treatment and safe storage (HWTS): HWTS treats water at home to improve the quality of drinking water and reduce waterborne diseases. Various treatment technologies from filters to disinfectants can be used for the purpose. It is cost effective and there are also simple systems available. It improves C. water quality at the point of use and increases climate resilience as it can still be used when other water sources are affected by a climate hazard. - B. Boiling: In an emergency, boiling is the best way to disinfect water that is unsafe due to the presence of protozoan parasites, bacteria, or viruses. Water should be filtered before boiling if it is cloudy. Filters designed for use when camping, coffee filters, towels (paper or cotton), cheese cloth, or a cotton plug in a funnel are effective ways to filter cloudy water. Place the water in a clean container and bring it to a full boil and continue boiling for at least three minutes (covering the container will help reduce evaporation). If people are more than 5000 feet above sea level, they must increase the boiling time to at least five minutes (plus about a minute for each additional 1000 feet). Boiled water should be kept covered while cooling. The advantage of boiling is removal of pathogens in water. Boiling also drives out some of the Volatile Organic Compounds (VOCs) that D. Reverse osmosis: RO systems may be present in the water. This method works well for contaminated water with living organisms. Yet, boiling is not routinely used to treat drinking water except in emergencies because of the inconvenience. Distillation: To remove impuri- - ties from water by distillation, the water is usually boiled in a chamber causing water to vaporize, and the pure (or mostly pure) steam leaves the non-volatile contaminants behind. The steam moves to a different part of the unit and is cooled until it condenses as liquid water. The resulting distillate drips into a storage container. Salts, sediment, metals - anything that won't boil or evaporate - remain in the distiller and must be removed. VOCs are good examples of contaminants that will evaporate and condense with water vapour. A vapour trap, carbon filter, or other devices must be used along with a distiller to ensure a more complete removal of contaminants. A good distillation unit produces very pure water with zero salt concentration. This is one of the few practical ways to remove heavy metals, nitrates, chloride, and other salts that carbon filtration cannot remove. But distillation takes time to purify water. It can take 2-5 hours to make a gallon of distilled water. - are generally used when water has very high salt concentration (like in brine) and may not find many takers in Maharashtra. The average RO system is a unit consisting of a sediment/chlorine pre-filter, the reverse-osmosis membrane, a water storage tank. and an activated-carbon post filter. The advantage of reverse osmosis is that it significantly reduces salt, most other inorganic material present in the water, and some organic compounds. With a quality carbon filter to remove any organic material that gets through the filter, the purity of the treated water approaches to that produced by distillation. E. Water filtration: Although there are many types of filters, the basic concept behind their working is fairly simple. The contaminants are physically prevented from moving through the filter either by screening them out with very small pores and/or, in the case of carbon filters, by trapping them within the filter matrix by attracting them to the surface of carbon particles through the process of adsorption. (Source: Drinking Water Methods, www.cyber-nook.com) #### 02.3 Improving Sanitation and Hygiene - A. Pit latrines: Pit latrines can be adapted to reduce vulnerability to floods and rising groundwater. A number of adaptations need to be made for the purpose. Latrines can be located on mounds, above the highest water level, or pits can be emptied regularly. Various designs are available to accomplish this. The adaptation can be based on specific environmental conditions. - B. Raised or step latrines: A raised or step latrine is the most appropriate option for on-site sanitation in areas with high water table. This is ideal for Konkan region of Maharashtra, which is endowed with high rainfall and excessive recharge from precipitation. The latrine pit should be dug at the end of the dry season to maximise the available depth of unsaturated soil. The pit can be C. lined with fired clay bricks, porous concrete, precast concrete rings, or ferro-cement. The lining can be extended above ground level to provide the required pit volume. The excavated material can be used to build up a mound or embankment around the latrine. This embankment (excluding the top 1.5 m) can be used for - if it is formed with permeable soil, and is well compacted with a stable side slope not exceeding 1:1.5. Embankment has to be thick enough to ensure that the effluent does not seep out of the sides of the mound. A slab should be constructed at least 0.5 meters D. Aqua-privy latrines: above the highest water level. In case suitable fill material is not available to build up an embankment, it may be necessary to make the lining impermeable by plastering inner and outer sides of the pit/tank with cement. Raised pit latrine is a relatively expensive option and in areas which are prone to heavy flooding the pit may be rendered useless due to pit filling up with silt during rainy season, if not lined with cement or concrete. seepage of effluent from the pit Shallow unlined or lined latrines: Construction of shallow pit latrines of around 1.5m depth can be relatively cheap. This may be the best option available to HHs in areas where latrines are prone to flooding and get filled with silt. If land is readily available then an unlined pit would generally be abandoned when it becomes full and the household - would dig a new one on their plot. If land is costly or if the pit is lined, then HHs may consider emptying out a pit when full. There is an obvious health risk associated with manual excavation and disposal of the contents. - agua-privy consists of a latrine constructed above or adjacent to a watertight tank which collects the liquid effluent from the toilet. The excreta along with the water which is used for flushing fall into the tank through a vertical pipe. This pipe should extend at least 75 mm into the liquid so that a water seal is formed. In order to maintain the water seal, the fluid level in the tank must be maintained and this requires a bucketful of water each day to compensate for evaporation losses. The overflow pipe should be connected to a soak away drainage trench or sewer. Since this type of latrine has a very low water usage the volume of effluent discharging from tank will be small, but the effluent will be very concentrated. The tank needs to be periodically de-sludged and therefore it must be provided with removable cover. ## **An Index for Assessing Climate Induced Risk in Water and Sanitation** ### 01. Index Development for Assessing Climate Induced Risk in WASH climate induced risk in WASH, the factors influencing the three different dimensions in rural water and sanitation were identified and grouped as natural, physical, socio-economic, the ways in which they can influence For index development to assess and institutional factors. These factors and relevant variables were identified based on the literature review, expert knowledge, and understanding of the study regions. Various factors and climate-induced hazard, and exposure and vulnerability of the communities to these hazards are discussed in the subsequent sub-sections. A summary of discussion is also presented in #### Factors Influencing Climate-induced Hazard in WASH floods and cyclone are mainly influenced by natural factors. These include rainfall and its variability, flood proneness, aridity, and overall renewable water availability. Above the normal rainfall usually reduces the probability of drought occurrence and helps in relieving water scarcity, and Missimer (2012), areas which receive low annual rainfall are at greater risk of having frequent droughts. In India, inter-annual variability in rainfall is found to be higher in regions of lower magnitude of (mean) annual rainfall (Sharma, 2012). Hence, such regions James et al., 2015). Occurrence of hazards, droughts, are likely to experience droughts more frequently as compared to those with lower variability (Kumar et al, 2006 & Further, given the nature of relationship between rainfall and runoff in semi-arid and arid tropics, the impact of meteorological droughts in terms vice versa. As pointed out by Maliva & of hydrological stress in areas experiencing low (mean) annual rainfall is greater as compared to their counterparts receiving higher (mean) annual rainfall, for the same intensity of drought (in terms of SPI) (Source: based on Deshpande et al., 2016: 1989) Flood prone areas are at a greater risk of recurring floods due to excessively high rainfall (Brouwer et al., 2007). Heavy rainfalls in the area can have adverse effect on surface water quality and groundwater which can contaminate water supply (Zimmerman et al., 2008: Brouwer et al. 2007). Another factor that influences water scarcity (during droughts) is the overall availability of annual renewable water in a region (Rijsberman, 2006). Renewable water availability of more than 1700 cum/capita/year is considered as secure (Falkenmark et al., #### 01.2 Factors Influencing Community's Exposure to Hazards Community exposure to any hazard is humid climate have a greater chance influenced by several factors. Natural factors include depth to water table, climate, and groundwater stock. Groundwater at shallow depth will be susceptible to biological contamination during floods. High groundwater stock can play a vital role in buffering the effects of the risks posed during droughts (Calow et al., 2010). In areas with cold climate, exposure of community to the risks posed during a bad rainfall year will be low as overall water requirements will be less (Kabir et al., 2016a, 2016b). Areas with of outbreak of water borne diseases during floods (Githeko et al., 2016). influencing community exposure to hazards and they include characteristics of the water source, age of the water supply system, provision of buffer storage of water in reservoirs per capita, proportion of HHs covered by tap water supply, proportion of HHs having access to modern toilets, flood control measures such as dams and water pumping facilities. A peren- nial water source would significantly reduce community exposure to droughts. Further, an ageing water supply system is at a greater risk There are several physical factors of damage and disruption during natural calamities such as floods and cyclones. Adequate provision of buffer water storage in reservoirs is one other important factor that can reduce exposure to water scarcity conditions during droughts (Kumar, 2010, 2016; McCartney & Smakhtin, 2010). Similarly, HHs' access to tap water supply and modern toilets will help in counteracting prolonged exposure to climate induced risks be more prone to floods (Patz and (Hunter et al., 2010; Montgomery & Elimelech, 2007; WHO, 2002). Further, flood control measures such as embankments, dykes, dams and water pumping infrastructure will help owing to the fact that there will be in reducing severity of floods. include the proportion of people living in low-lying areas, and the proportion of people having access to water supply source within the dwelling premise. Low lying areas, due to its topographical disadvantage, will Institutional and policy factors also Kovats, 2002). Nevertheless, people having access to water supply within their premises will have less exposure to risk posed by droughts or floods, lesser chance of water contamination that normally happens during collec-Socio-economic factors in the context tion, conveyance and storage, if the source is available (WHO, 2002). Also, people who follow good hygiene will also be less exposed to risks such as food contamination. play an important role in regulating community exposure to climate induced risks. Policy to hire private tankers for emergency water supply in rural areas and number of such tankers being made available will help community to face water stress induced by droughts. Further, provision of disaster risk reduction measures such as flood and cyclone warning, drought prediction, and evacuation measures will help community to prepare better for any adverse eventuality (Pollner et al., 2010). #### 01.3 Factors Influencing Community Vulnerability to Hazards Community vulnerability factors to hazards are mainly natural, socio-economic and institutional in nature. natural factor that influence in the context. For instance, cold climate and humidity increase flood related health risks such as diarrhoea caused by bacteriological contamination of water and food. (Haines et al, 2006; Githeko et al., 2016). Inadequate personal and water shortages can result in diseases such as diarrhoea (Esrey et al., 1985; Howard, 2005). But in hot, arid, and semi-arid climates breeding of water-related insect vectors that can cause such diseases would be less (Hunter, 2003). Hot and arid areas are more prone to drought related health al., 2006). Population density is a key socio-economic variable that affect community vulnerability to the health risks associated with climate related hazards. More densely populated areas have greater faecal loadings within the environment, and these are associated with greater vulnerability to infectious disease (Woodward et al., 2000). Burden of waterborne diseases is often closely linked to poverty (Fass, 1993; Stephens et al., 1997) and malnutrition. The poor tend to be more vulnerable to diseases and have least access to basic services(WHO & UNICEF, 2000). This could be due to Climate is the single most important high proportion of them living under poverty, lack the wherewithal to have access to alternate sources of water. and are also generally unhealthy. There is greater prevalence of undernourishment in general and malnourishment among children. Nevertheless, better access to primary health services will community hygiene resulting from make them less vulnerable. People with malnutrition are more vulnerable to water borne diseases. Institutional and policy factors such as availability of greater number of institutions with ability to provide relief and rehabilitation measures to people affected during floods and risks such as dehydration (Haines et cyclones (including Government, private and NGOs) improve community adaptive capacity against climate induced vulnerabilities. Similarly, presence of adequate number of public health infrastructure decreases population vulnerability to the severity of diseases caused during hazards (Haines et al., 2006). Finally, social ingenuity also matters in its adapting to natural disasters and reducing the vulnerability. Social cohesion, which is characteristic of homogeneous communities, also helps in adaptation and vulnerability reduction (IRAP, GSDA & UNICEF, 2013). Table 1: Identified Factors Influencing Climate Induced Risk in Rural Water and Sanitation | S. No | Sub-Indices<br>(Factor) | Variable (Indicators) | Rationale | Impact on severity<br>of Risk (Negative<br>or Positive) | |-------|-------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------| | Α | Hazard Sub-ind | dex | | | | 1 | Natural | Rainfall | In high rainfall areas, the drought impacts on hydrology will be less as compared to low rainfall areas and vice versa in low rainfall areas. | Negative | | | | Rainfall variability | In areas of high rainfall variability, the frequency of occurrence of severe droughts will be higher | Positive | | | | Flood proneness | 'Flood prone' areas are more susceptible to hazards associated with high rainfall | Positive | | | | Aridity | Impact of droughts in areas having high aridity in terms of hydrological changes will be more as compared to areas of low aridity | Positive | | | | Annual Renewable Water<br>Availability | Renewable water availability of more than 1700 cum/capita/year is considered as secure | Negative | | В | Exposure Sub- | Index | | | | 1 | Natural | Depth to groundwater table | to groundwater Groundwater at shallow depth will be susceptible to biological contamination during floods | | | | | Temperature and humidity | In areas with cold and humid climate there is high chance of water and food contamination due to unhygienic conditions and spreading of insect vectors | Positive | | | | Groundwater stock | Act as buffer during droughts. Normally available in the alluvial areas, and as valley fills along rivers | Negative | | 2 | Physical | Characteristics of water resources | Perennial water source would significantly reduce community exposure to droughts | Negative | | | | Condition of water supply system | Old water supply systems are more susceptible to disruption and damage during floods and cyclones | Negative | | | | Provision of buffer storage of water in reservoirs per capita | Reduces exposure to water scarcity conditions during droughts | Negative | | | | Proportion of HHs covered by tap water supply | Reduces chances of contamination of water during collection & storage | Negative | | | | Proportion of HHs having access to modern toilets | Reduces chances of vector borne diseases through food contamination etc. | Negative | | | | Flood control measures<br>such as embankments,<br>dykes, dams and water<br>pumping facilities | Reduces severity of floods | Negative | | S. No | Sub-Indices<br>(Factor) | Variable (Indicators) | Rationale | Impact on severity<br>of Risk (Negative<br>or Positive) | |-------|-------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------| | 3 | Socio-Economic | Proportion of people living in low-lying areas | Relatively more exposed to flood hazards | Positive | | | | Proportion of people<br>having access to water<br>supply source within the<br>dwelling premise | Less exposure to risk posed by droughts or floods | Negative | | | | Hand washing before and after food and after toilet use | Hand washing before and after food intake and after toilet use will help reduce chances of food contamination with faecal matter. | Negative | | 4 | Institutional & Policy | Existence of policy to hire private tankers for emergency water supply | Help community to face water stress induced by droughts | Negative | | | | Provision for tanker water supply in rural areas in terms of number of tankers | Increases community's ability to tide over the crisis caused by reduced water supply from public systems | Negative | | | | Disaster risk reduction measures available | Helps community to prepare better for any adverse eventuality | Negative | | С | Vulnerability Su | ıb-Index | | | | 1 | Natural | Climate | In cold and humid areas, communities will be more prone to flood and water scarcity related health risks | Positive | | | | | In hot and arid areas, communities are more prone to heat stroke, dehydration | Positive | | 2 | Socio-Economic | Population density | High population density increases vulnerability | Positive | | | | Proportion of people living under poverty | Vulnerability will be high for those who lack wherewithal to have access to alternate sources of water including purchased water | Positive | | | | Proportion of people who are unhealthy | Undernourishment in general and malnourishment, especially among children, make community more vulnerable | Positive | | | | Access to primary health services | Good access to primary health facilities make community less vulnerable | Negative | | | | Percentage of children<br>under the age of 5 with<br>stunting (Height-for-age) | Physical growth of children (under the age 5),<br>an indicator of the nutritional well-being of the<br>population, influences vulnerability to diseases | Negative | | S. No | Sub-Indices<br>(Factor) | Variable (Indicators) | Rationale | Impact on severity<br>of Risk (Negative<br>or Positive) | |-------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------| | 3 | Institutional & Policy | Ability to provide relief<br>and rehabilitation<br>measures for floods<br>and cyclones (number<br>of agencies, including<br>Government, private and<br>NGOs) | Improve community adaptive capacity | Negative | | | | Social ingenuity and cohesion | Improves community adaptive capacity | Negative | | | | Adequate number of primary and other health infrastructure | Decreases community vulnerability to diseases | Negative | The matrix in Table 2 suggests the quantitative criteria for assigning values to various sub-indices for computing the climate risk index for different types of areas. Table 2: Matrix for Computing the Values of Various Indices for Assessing the Climate-Induced Risk in Water and Sanitation in Maharashtra | Sub-Index<br>(Factors) | Variable<br>(Indicators) | Impact on severity of | | Score | | | Remarks | |------------------------|------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|-------------------------------| | | | Risk (Negative or Positive) | 1 = Low | 2 = Moderate | 3 = High | | | | A. Hazard S | Sub-Index | | | | | | | | Natural | Rainfall | Negative | Average annual rainfall greater than or equal to 1000 mm | Average annual rainfall between 500-1000 mm. | Average annual rainfall less than equal to 500 mm. | | The hazard is drought | | | Rainfall<br>Variability | Positive | Coefficient<br>of variation in<br>rainfall is less<br>than 17% | Coefficient<br>of variation in<br>rainfall is equal<br>to/between 17<br>and 40% | Coefficient<br>of variation in<br>rainfall is greater<br>than 40% | | As per guide-<br>lines of IMD | | | Aridity | Positive | Humid-sub-hu-<br>mid | Semi-arid | Arid to Hyper-ar-<br>id | | As per guide-<br>lines of IMD | | | Annual<br>Renewable<br>Water Avail-<br>ability | Negative | Renewable<br>water availability<br>of more than<br>equal to 1700<br>cum/capita/year | Renewable<br>water availabil-<br>ity of between<br>1000-1700 cum/<br>capita/year | Renewable<br>water availabil-<br>ity of less than<br>equal to 1000<br>cum/capita/year | | | | Sub-Index<br>(Factors) | Variable<br>(Indicators) | Impact on severity of | | Score | | Score given | Remarks | |------------------------|------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------| | | | Risk (Negative or Positive) | 1 = Low | 2 = Moderate | 3 = High | | | | B. Exposure | Sub-Index | | | | | | | | Natural | Depth to<br>ground water<br>table | Negative | Depth to ground<br>water table is<br>greater than or<br>equal to 30 m | Depth to ground<br>water table is<br>between to 5-30<br>m | Depth to ground<br>water table is<br>less than equal<br>to 5 m | | The exposure is in the form of bacteriological contamination | | | Temperature<br>and Humidity | Positive | Temperature ranging between 30 and 350C; Humidity ranging from 30±5% to 50±3%. | Temperature ranging between 27 and 300C and Humidity ranging 30±5% to 50±3% | Temperature ranging between 23 and 270C; Humidity ranging from 60±8% to 80±6% most favorable condition for unhygienic conditions | | | | | Groundwater<br>stock | Negative | Groundwater<br>stock is five<br>times more than<br>annual recharge | Groundwater<br>Stock is two<br>times more<br>than the annual<br>recharge | Groundwater<br>stock is equal to<br>or less than the<br>annual recharge | | As per guide-<br>lines of CGWB | | Physical | Character-<br>istics of<br>natural water<br>resources | Negative | Perennial Water<br>source with<br>low inter-an-<br>nual variability<br>(Example. river) | Perennial source<br>with high<br>inter-annual<br>variability | Seasonal water<br>sources (ephem-<br>eral rivers, lakes,<br>ponds etc,) | | | | | Condition<br>of the water<br>supply<br>system | Negative | New water<br>supply pipeline<br>systems (Less<br>than 5 years) | Medium aged<br>water supply<br>pipeline systems<br>(between 5 and<br>15 years) | Old aged water<br>supply pipelines<br>systems ( more<br>than 15 years) | | | | | Provision<br>of buffer<br>storage of<br>water in<br>reservoirs<br>per capita | Negative | Provision of<br>buffer storage<br>in a reservoir<br>minimum 36<br>m3/capita/year | Provision of<br>buffer storage<br>in a reservoir<br>between 15m3<br>cum/capita/year | Provision of<br>buffer storage in<br>a reservoir less<br>than 9m3 m/<br>capita/year | | | | | Proportion of<br>HHs covered<br>by tap water<br>supply | Negative | More than 75%<br>of HHs are<br>covered by tap<br>water supply | 40-60% of HHs<br>are covered by<br>tap water supply | Less than equal<br>to 40% of HHs<br>are covered by<br>tap water supply | | | | Sub-Index<br>(Factors) | Variable (Indicators) | Impact on severity of | | Score | | Score given | Remarks | |---------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------| | | | Risk (Negative or Positive) | 1 = Low | 2 = Moderate | 3 = High | | | | | Proportion of<br>HHs having<br>access to<br>modern<br>toilets | Negative | More than<br>90% of HHs<br>having access to<br>improved sanita-<br>tion and usage is<br>more than 90% | 60%-80% of<br>HHs having<br>access to<br>improved sanita-<br>tion and usage<br>is between<br>70%-90% | Less than equal<br>to 60% of HHs<br>having access to<br>improved sanita-<br>tion and usage is<br>more than 70% | | | | | Flood control<br>measures<br>such as<br>embank-<br>ments,<br>dykes, dams<br>and water<br>pumping<br>facilities | Negative | Flood control<br>measures avail-<br>able | | No Flood control<br>measures avail-<br>able | | | | Socio-<br>Economic | Proportion of<br>people living<br>in low-lying<br>areas | Positive | Less than or<br>equal to 25% of<br>people living in<br>low-lying areas | 25-50% of<br>people living in<br>low-lying areas | Greater than or<br>equal to 50% of<br>people living in<br>low-lying areas | | | | | Proportion<br>of people<br>having<br>access to<br>water supply<br>source within<br>the dwelling<br>premise | Negative | More than<br>75% of people<br>Access to<br>water supply<br>source within<br>the dwelling<br>premise | 40-75% of<br>people having<br>Access to water<br>supply source<br>within the<br>dwelling premise | Less than<br>25% of people<br>having Access<br>to water supply<br>source within<br>the dwelling<br>premise | | | | | Hand-wash-<br>ing before<br>eating or<br>preparing<br>food and<br>after toilet<br>use | Negative | Hand-washing<br>before eating or<br>preparing food<br>and after toilet<br>use | Hand-washing<br>after toilet use<br>only | No hand<br>washing after<br>food/no hand<br>washing after<br>toilet usage | | | | Institutional<br>& Policy | Existence<br>of policy to<br>hire private<br>tankers for<br>emergency<br>water supply | Negative | Policy exist to<br>hire private<br>tankers for<br>emergency<br>water supply | | No Policy exist<br>to hire private<br>tankers for<br>emergency<br>water supply | | | | | Provision for<br>tanker water<br>supply in<br>rural areas in<br>terms of no.<br>of tankers | Negative | More than 1<br>tanker for 20<br>HHs | 1 tanker for<br>20-50-HHs | Less than one<br>tanker for 50<br>HHs | | 1 tanker<br>capacity of<br>7000 liters<br>meet require-<br>ment of 20<br>HHs (70 liters/<br>capita/day) | | Sub-Index<br>(Factors) | Variable (Indicators) | Impact on severity of | | Score | | | Remarks | |------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|-----------------------------------------------------------------------| | | | Risk (Negative or Positive) | 1 = Low | 2 = Moderate | 3 = High | | | | | Disaster risk<br>reduction<br>measures<br>available | Negative | Disaster risk<br>reduction force<br>available within<br>a radius of 100<br>km | Disaster<br>reduction<br>force available<br>within a radius<br>of 100-500 km<br>radius | Disaster risk<br>reduction force<br>available outside<br>500 km radius | | | | C. Vulnerab | oility Sub-Inde | x | | | | | | | Natural | Climate | Positive | Temperature ranging between 30 and 350C; Humidity ranging from 30±5% to 50±3% ./ Mean annual temperature less than 330C and humidity above 90% | Temperature ranging between 27 and 300C; Humidity ranging from 30±5% to 50±3% / Mean annual temperature between 33 and 400C and Humidity between 50 and 65% | Temperature ranging between 23-270C and Humidity ranging 60±8% to 80±6% / Temperature less than 40-460C and Humidity less than 50% | | | | Socio-<br>Economic | Population<br>density | Positive | Population<br>Density less<br>than 200<br>persons/sq. km | Population Density in the range of 200-500 person/ sq. km | More than 500<br>persons/sq. km | | | | | Proportion<br>of people<br>living under<br>poverty | Positive | Less than equal to 25% of people living under poverty | 25-60% of<br>people living<br>under poverty | Greater than<br>60% of people<br>living under<br>poverty | | | | | Proportion of people who are unhealthy | Positive | Infant mortal-<br>ity rate less<br>than equal to<br>12.0 (per 1000<br>people) | Infant mortality<br>rate between<br>12.0 to 60.0 (per<br>1000 people) | Infant Mortality<br>rate greater than<br>60.0 (per 1000<br>people) | | | | | Access to primary health services | Negative | More than<br>60% people<br>having access to<br>primary health<br>services | 25-60% of<br>people having<br>access to<br>primary health<br>services | Less than<br>25% of people<br>having access to<br>primary health<br>services | | | | | Percentage<br>of children<br>under the<br>age of 5 with<br>stunting (low<br>height-for-<br>age ratio) | Negative | Average height<br>of children<br>below the age<br>of 5 as a % of<br>the median is 95<br>to 110 | Average height<br>of children<br>below the age<br>of five as a % of<br>the median is 85<br>to 89 | Average height<br>of children<br>below the age<br>of five as a % of<br>the median is<br>less than 85 | | For the<br>median,<br>we would<br>consider the<br>State as a<br>whole | | Sub-Index<br>(Factors) | Variable<br>(Indicators) | Impact on severity of | | Score | | Score given | Remarks | |---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------| | | | Risk (Negative or Positive) | 1 = Low | 2 = Moderate | 3 = High | | | | Institutional<br>& Policy | Ability to provide relief and rehabilitation measures for floods and cyclones (no. of agencies, including Government, private and NGOs) | Negative | More than one<br>NGO for 1,000<br>people | One NGO for<br>1,000-2000<br>people | Less than one<br>NGO for 2000<br>people | | As per NGO<br>regulations<br>one NGO<br>covered 600<br>peoples | | | Social ingenuity and cohesion | Negative | Settled and<br>homogenous<br>communities,<br>exposed to<br>natural disasters | Settled, but<br>heterogeneous<br>communities<br>exposed to<br>natural disasters | Settled, but<br>heterogeneous<br>communities<br>not exposed to<br>natural disasters | | | | | Adequate<br>number of<br>primary and<br>other health<br>infrastructure | Negative | One Sub Health<br>Centre covered<br>3000 to 5000 of<br>rural population | One Sub Health<br>Centre covered<br>6000 to 8000 of<br>rural population | One Sub Health<br>Centre covered<br>more than 8000<br>of rural popula-<br>tion | | As per<br>Ministry of<br>FHW guide-<br>lines one<br>Sub-centre<br>(health centre<br>covered<br>3000-5000<br>rural popula-<br>tion | ## 02 Computation of the Composite Index The composite index has three sub-indices (one for hazard, one for exposure, and one for vulnerability). Each sub-index has several variables (indicators) whose numerical values (scores) together characterize the attribute represented by the sub-index (say, climate hazard) in quantitative terms. To begin with, a maximum score of '3' (three) will be assigned to any variable in the case of highest risk situation, and the minimum score of '1' (one) will be assigned to the variable for the lowest risk situation. For obtaining numerical value of each sub-index, score for each indicator will be added up. It can be represented as: Sub Index value $\sum_{i=1}^{n} = S_i$ Where, S is the product of score and weightage obtained by each variable under the sub-index and n is the total number of variables (indicators) considered for assessing the value of each sub-index. Values computed for each sub-index will be normalized by dividing it by the highest possible value possible for that sub-index. For instance, a sub-index which has five independent variables (indicators) will have a maximum computed value of 15 (i.e., 5 X 3). This means the highest normalized value possible for any sub-index will be 1.0. The composite climate risk index for water and sanitation (R WASH) will be computed by multiplying the values of the three sub-indices viz., hazard (HWASH-SI), exposure (EWASH-SI) and vulnerability (VWASH-SI). It can be mathematically represented as: ## Climate-Induced Risk in WASH for Marathwada and Vidarbha Divisions of Maharashtra ## 01. Data Types and Source duced WASH risks in the two divisions of Maharashtra pertaining to 28 different variables were obtained from was done at the district level. The data Water and Sanitation Organizavarious secondary sources, except for one variable. The only variable on which primary data were collected (from individual HHs through sample survey) was 'hand-washing practice' as secondary data pertaining to this were not available with official The data for assessing climate-in-sources. For rest of the variables, data were available at the district level and hence computation of the risk index sources included: - Climate atlas of Water Resources Department of Maharashtra; - Ground Water Survey and Development Agency of Maharashtra; - ☐ Maharashtra Water Supply & Sanitation Department, - tion (WSSO) of Maharashtra; and, - Maharashtra State Disaster Management Department. ### 02. Results and Discussions The climate-induced risk in WASH was assessed at district level for eight districts of Marathwada and 11 districts of Vidarbha divisions using the composite climate risk index. The index takes into consideration the degree of climate induced hazard, the exposure of the district population to the hazard, and vulnerability of the community to the hazard. Complex variables are used to describe each one of the three factors, as explained in Section VI on 'Development of WASH' (see Table 1). The index is defined based on the natural, physical. socio-economic, and institutional parameters that determine the three dimensions of climate-induced risk in WASH such as hazard, exposure and vulnerability. The scores are assigned to the indicators representing each one of these parameters depending on their absolute values for the district concerned as per the criteria already defined in Table 2. The values of different sub-indices of the climate risk index were computed using the values/scores assigned to each indicator representing several physical, social, economic and insti- describe these sub-indices. In the case of climate related hazard only five physical variables were considered. They include mean annual rainfall. rainfall variability, flood proneness, aridity, and annual renewable water resource availability. Their values were computed by analyzing the secondary data pertaining to these variables available at the district level. Similarly, in the case of exposure, a total of 14 variables were considered. Three of them from natural sub-index. an index on climate-induced risk in two physical, six socio-economic, and three institutional and policy related. The values of all except one variable were computed using secondary data pertaining to these variables available at the district level. In the case of the variable relating to 'hand washing', primary data were collected from representative districts using primary survey of sample houses. In the case of vulnerability, a total of nine variables were considered - one natural, five socio-economic and three institution and policy related. All these data were secondary in nature collected at the district level. > A discussion on the estimation of different parameters used for the compu- corresponding results are presented in Annexure 1. The computed values of all these 28 parameters and the respective sub-indices and composite index computed using them for all the districts of Marathwada and Vidarbha are presented in Table 3 and Table 4, respectively. The computed values of composite risk index for the districts of Marathwada and Vidarbha are presented in Figure 1 and Figure 2, respectively. The computed values of the sub-indices for hazard, exposure and vulnerability for each of the districts of Marathwada and Vidarbha are graphically represented by Figure 3 and Figure 4, respectively. A value of 0.33 or less for any sub-index signifies low magnitude; a value in the range of 0.33 to 0.67 is considered to be a moderate magnitude; and the value greater than 0.67 high magnitude. Total score of less than 0.04 implies low risk, a score in the range of 0.05 to 0.30 moderate risk, and an 'overall risk' greater than 0.30 implies high risk. The results show that the climate-induced risk in WASH for Marathwada and Vidarbha regions considered tutional variables, which together tation of various sub-indices and the together varies spatially between 0.22 Marathwada region, which is historically known for droughts, the value Parbhani. In the case of Vidarbha, which is relatively better in water resources endowment, as compared to Marathwada, but characterized by poor water supply and infrastructure, the value of the district level risk index ranges from a lowest of 0.22 Washim. Parbhani (Marathwada). In the case of the composite risk index, viz., hazard, exposure and vulnerability indices. also vary drastically from region to of risk index varies from a lowest of region and also amongst districts 0.23 in Jalna to a highest of 0.35 in within each region. The range of scores for components in Marathwada is larger, as compared to Vidarbha region. These are discussed separately in the subsequent paragraphs. As regards the 'hazard' component of ence being only 0.07). the composite risk index, in the case in Chandrapur to a highest of 0.33 in of Marathwada, the value varies from a lowest of 0. 53 for Jalna district in Chandrapur (Vidarbha) and 0.35 in The values for different components of to a highest of 0.73 for Osmanabad district. In the case of Vidarbha, the value of the sub-index for hazard ranges from a lowest of 0.60 (in seven districts) to the highest of 0.67 for the remaining five districts. The variation in the degree of hazard is more (the difference in the value of sub-index being 0.20) amongst the districts of Marathwada as compared to their counterparts in Vidarbha (the differ- Figure 1: Climate-Induced Risk in Water, Sanitation and Hygiene (WASH) in Marathwada Region, Maharashtra Figure 2: Climate-Induced Risk in Water, Sanitation and Hygiene (WASH) in Vidarbha Region, Maharashtra climate induced WASH risks. As regards exposure, in the case of As regards vulnerability, in the case Marathwada, the value of the sub-in- of Marathwada division, the range of dex ranges from 0.57 for Aurangab- the sub-index varies from 0.67 for Bid ad and Osmanabad to a highest of to 0.78 for Nanded. Nanded therefore 0.67 for Nanded. The corresponding not only is more exposed to climate values for Vidarbha division districts induced hazards but also has high range from 0.60 for Amravati to 0.74 vulnerability. For Vidarbha, the value of for Gondia. Hence, the districts in the sub-index for vulnerability ranges Vidarbha region are more exposed to from a lowest of 0.56 for Chandrapur to 0.70 for Akola, Amravati, Buldhana, Wardha and Washim. By comparing the two divisions, it can be inferred that the vulnerability to climate induced hazards is generally lower for the districts of Vidarbha division as opposed to those of Marathwada. The average value for Vidarbha region is 0.66 against 0.71 for Marathwada. Figure 3: Climate-Induced Risk in Water, Sanitation and Hygiene (WASH) in Marathwada Region, Maharashtra Figure 4: Climate-Induced Risk in Water, Sanitation and Hygiene (WASH) in Vidarbha Region, Maharashtra ## 03. The Factors Causing High Climate Risk in Certain Districts and the Ways to Reduce it To sum up, as per our estimates, the ability to provide relief and rehabil-Osmanabad (0.31), and Nanded climate hazards, while Parbhani, Akola terized by high incidence of climate exposure. Osmanabad, Parbhani, Akola, Washim and Nanded districts are also highly vulnerable to climate areas. induced hazards. ability in Osmanabad is in the range of 1501 and 3001 m3/ha, rendering it water-deficit region. This variable in particular makes the district prone to high climate-induced hazard. vulnerable because of the high age of five with stunting, and poor reduced water resource availability highest climate-induced WASH risk itation measures during floods and is in the districts of Parbhani (0.35), cyclones. Similarly high vulnerability is observed for Parbhani, Nanded, (0.31) in Marathwada, while Akola Akola and Washim. The exposure to water supply, so as to reduce malnuand Washim districts of Vidarbha climate hazard is highest in Parbhani also have a high risk of 0.33 each. It district of Marathwada, while Akola is important to understand the factors and Washim districts of Vidarbha region to drought impacts. responsible for the differential values region also show high exposure. of climate induced risks amongst. This can be attributed to a number districts, in order to reduce the risk in of factors. These districts score very districts where it is high. Osmanabad low in indicators such as proportion improving access to drinking water district experiences high incidence of of HHs covered by tap water supply, access to modern toilets, provision of endowment of the region is good and Washim districts are charactranker water supply in rural areas and with several perennial rivers. This groundwater stock. Additionally the Parbhani district has a high proportion of its population living in the low-lying A careful analysis shows that water and building of proper village level The annual renewable water avail- infrastructure can play a significant role in reducing the hazard and exposure. For Marathwada region, import of surface water from waterrich regions such as the western Ghat which has a rich endowment of river Further, Osmanabad is also highly flows, would help reduce the hazard caused by meteorological droughts percentage of children under the in the region, which is in the form of for every use. Dependable sources of water for irrigation as well as water supply would be required for improving food and nutritional security and trition and infant mortality. This can only reduce the vulnerability of the On the other hand, Vidarbha region requires better infrastructure for supply and sanitation, though water can be in the form of more large and medium reservoirs for storing surface runoff of the region. Infrastructure for pumping and transporting the stored good quality water to the rural areas, water distribution systems are the other requirements. It is to be kept in mind that overdependence on groundwater resources for domestic water supply is not desirable for the region, as the wells run dry towards the end of winter even in normal rainfall years. If dependable sources of good quality water are made available to the villagers, it will drastically reduce need for water tanker supply during droughts and summer months. Also, once this is done, the community members will have greater motivation to go for individual HH level tap water connections and pay for it, as they would be sure of getting adequate supplies of good quality water every year and in every season. As earlier studies in Maharashtra suggests, with access to individual HH level water connections, the families will have strong incentive to go for improved toilets. Table 3: Computation of Various Sub-indices of Climate Risk Index and the Associated Variables for Districts of Marathwada Division | RISK | Sub-Indicies | SL No | Risk Indicators | Aurangabad | Bid | Hingoli | Jalna | Latur | Nanded | Osmanabad | Parbhani | Marathwada | |------|--------------|--------|---------------------------------------------------------------------------------------|------------|------|---------|-------|-------|--------|-----------|----------|------------| | | | 1 | Rainfall | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | 2 | Rainfall Variability | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | 3 | Flood Proneness | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | | | | 4 | Aridity | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | 5 | Annual Renewable Water Availability | 2 | 1 | 2 | 1 | 3 | 1 | 3 | 2 | 2 | | | Ove | rall F | lazard | 0.67 | 0.60 | 0.67 | 0.53 | 0.67 | 0.60 | 0.73 | 0.67 | 0.67 | | | | 6 | Depth of groundwater table | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | | | | 7 | Temperature and Humidity | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | 8 | Groundwater stock | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | | Physical | 9 | Characteristics of natural water resources | 1 | 3 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | | | | 10 | Provision of buffer storage of water in reservoirs per capita | 1 | 2 | 2 | 3 | 3 | 1 | 1 | 3 | 1 | | | | 11 | Proportion of HHs covered by tap water supply | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | | | 12 | Proportion of HHs having access to modern toilets | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | | | 13 | Flood control measures such as embankments, dykes, dams and water pumping facilities | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | 14 | Proportion of people living in low-lying areas | 1 | 1 | 1 | 1 | 1 | 3 | 1 | 3 | 1 | | | | 15 | Proportion of people having access to water supply source within the dwelling premise | 2 | 2 | 3 | 3 | 2 | 3 | 2 | 2 | 2 | | | | 16 | Hand-washing before and after food and after toilet use | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | 17 | Existence of policy to hire private tankers for emergency water supply | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | 18 | Provision for tanker water supply in rural areas in terms of no. of tankers | 2 | 2 | 3 | 2 | 3 | 3 | 2 | 3 | 3 | | | | 19 | Disaster risk reduction measures available | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | | | Ove | rall E | xposure | 0.57 | 0.62 | 0.64 | 0.62 | 0.62 | 0.67 | 0.57 | 0.74 | 0.60 | | RISK | Sub-Indicies | SL No | Risk Indicators | Aurangabad | Bid | Hingoli | Jalna | Latur | Nanded | Osmanabad | Parbhani | Marathwada | |------|--------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------|------------|------|---------|-------|-------|--------|-----------|----------|------------| | | Natural | 20 | Climate | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | 21 | Population density | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | 22 | Proportion of people living under poverty | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | 23 | Proportion of people who are unhealthy | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | 24 | Access to primary health services | 2 | 1 | 1 | 1 | 1 | 3 | 2 | 1 | 2 | | | | 25 | Percentage of children under the age of 5 with stunting (low height-for-age ratio) | 3 | 2 | 3 | 3 | 2 | 3 | 3 | 3 | 3 | | | | 26 | Ability to provide relief and rehabilitation measures for floods and cyclones (no. of agencies, including Government, private and NGOs) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | | | 27 | Social ingenuity and cohesion | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | 28 | Adequate no. of primary and other health infrastructure | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | Ove | rall V | ulnerability | 0.74 | 0.67 | 0.70 | 0.70 | 0.67 | 0.78 | 0.74 | 0.70 | 0.71 | | Risk | Inde | х | | 0.28 | 0.25 | 0.30 | 0.23 | 0.28 | 0.31 | 0.31 | 0.35 | 0.29 | Table 4: Computation of Various Sub-indices of Climate Risk Index and the Associated Variables for Districts of Vidarbha Division | | | | dex for Assessing the Clin<br>rashtra | nate-In | duced | Risk i | n Wate | er, Sani | itation | and H | ygiene | (WAS | H) in \ | /idarbh | าล | |------|--------------|--------|----------------------------------------|---------|----------|----------|----------|------------|------------|--------|--------|--------|---------|----------|----------| | RISK | Sub-Indicies | SL No | Risk Indicators | Akola | Amravati | Bhandara | Buldhana | Chandrapur | Gadchiroli | Gondia | Nagpur | Wardha | Washim | Yavatmal | Vidarbha | | | | 1 | Rainfall | 2 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | | | | 2 | Rainfall Variability | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | 3 | Flood Proneness | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | 4 | Aridity | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | 5 | Annual Renewable Water<br>Availability | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | Ove | rall F | lazard | 0.67 | 0.67 | 0.60 | 0.67 | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 | 0.67 | 0.67 | 0.60 | | Sub-Indicies | SL No | Risk Indicators | Akola | Amravati | Bhandara | Buldhana | Chandrapur | Gadchiroli | Gondia | Nagpur | Wardha | Washim | Yavatmal | Vidarbha | |--------------|--------|-----------------------------------------------------------------------------------------------|-------|----------|----------|----------|------------|------------|--------|--------|--------|--------|----------|----------| | | 6 | Depth to ground water table | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | 7 | Temperature and Humidity | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 2 | 2 | 2 | 2 | | | 8 | Groundwater stock | 2 | 2 | 3 | 3 | 3 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | | cal | 9 | Characteristics of natural water resources | 2 | 1 | 1 | 1 | 2 | 2 | 3 | 2 | 2 | 2 | 1 | 2 | | Physical | 10 | Provision of buffer storage of water in reservoirs per capita | 3 | 1 | 3 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | | | 11 | Proportion of HHs covered by tap water supply | 3 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | | 12 | Proportion of HHs having access to modern toilets | 3 | 2 | 3 | 3 | 3 | 3 | 3 | 2 | 3 | 3 | 3 | 3 | | | 13 | Flood control measures<br>such as embankments,<br>dykes, dams and water<br>pumping facilities | 3 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 1 | 1 | | | 14 | Proportion of people living in low-lying areas | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | 15 | Proportion of people having access to water supply source within the dwelling premise | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 2 | 2 | 3 | 3 | 2 | | | 16 | Hand-washing before and after food and after toilet use | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | 17 | Existence of policy to hire private tankers for emergency water supply | 1 | 1 | 3 | 1 | 1 | 3 | 3 | 3 | 3 | 1 | 1 | 2 | | | 18 | Provision for tanker water supply in rural areas in terms of number of tankers | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | | 19 | Disaster risk reduction measures available | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Ove | rall E | xposure | 0.71 | 0.60 | 0.71 | 0.62 | 0.64 | 0.67 | 0.74 | 0.67 | 0.69 | 0.71 | 0.64 | 0.67 | | RISK | Sub-Indicies | SL No | Risk Indicators | Akola | Amravati | Bhandara | Buldhana | Chandrapur | Gadchiroli | Gondia | Nagpur | Wardha | Washim | Yavatmal | Vidarbha | |------|--------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|----------|----------|------------|------------|--------|--------|--------|--------|----------|----------| | | Natural | 20 | Climate | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | | | | 21 | Population density | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | | | | 22 | Proportion of people living under poverty | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | 23 | Proportion of people who are unhealthy | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | 24 | Access to primary health services | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 1 | 1 | 2 | | | | 25 | Percentage of children<br>under the age of five with<br>stunting (low height-for-<br>age ratio) | 3 | 3 | 2 | 3 | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 2 | | | | 26 | Ability to provide relief and rehabilitation measures for floods and cyclones (number of agencies, including Government, private and NGOs) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | | | 27 | Social ingenuity and cohesion | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | 28 | Adequate number of primary and other health infrastructure | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | | | Ove | rall V | ulnerability | 0.70 | 0.70 | 0.67 | 0.70 | 0.56 | 0.59 | 0.63 | 0.63 | 0.70 | 0.70 | 0.67 | 0.66 | | Risk | Inde | x | | 0.34 | 0.28 | 0.29 | 0.29 | 0.21 | 0.24 | 0.28 | 0.25 | 0.29 | 0.34 | 0.29 | 0.28 | ## **Improving Climate Resilience of WASH Programmes in Maharashtra** ### 01. Introduction Water is the primary medium through ecosystem and thus the livelihood important to both society and ecosystems. People depend on a reliable, is required for agriculture, energy of these uses put pressure on water resources. These stresses are likely to be exacerbated by climate variability and change. In many areas reduction in precipitation and increase in temperature is likely to increase ages are relatively smaller problem the quality of water and can damage 2016: p 41). the infrastructure that we use to transport and deliver water (Rance and Walmsley, 2014). WASH sector is already affected in which climate influences the Earth's many different ways by weather and climate events such as variability, and well-being of societies. Climate seasonality and extreme events. This variability and change directly impact adversely impacts on drinking water water resources. Water resources are availability, its quality, and performance of sanitation and hygiene services. These are intrinsically connected with clean supply of drinking water. Water public health. When there is decline in water supplies (e.g. dry wells), people production, navigation, recreation, may be forced to drink contaminatand manufacturing processes. Many ed water (e.g. untreated water from ponds and streams) or compromise on personal hygiene and environmental sanitation. Risks to water safety emanate primarily from unsafe water because of poor sanitation (proliferation of open defecation), and contamdemand for water, with shrinking inated water at source or at point of supplies. In some areas, water short- use. This can be due to chemical/ microbial contamination, inadequate than increased runoff, flooding, or sea household storage and inappropriate level rise. These effects can reduce personal hygiene practices (UNICEF, Pollution of wells and flooding of latrines also increase the risk of higher incidence of infectious diseases. In addition, a reduction in water availability makes hygiene practices more challenging and behavioural change campaigns might not work in areas where access to water is increasingly constrained by the changing climate. A higher incidence of extreme events poses additional stress to the sustainability of both sanitation and hygiene practices. Examples of impact of hazards on the WASH sector are presented in Table 5. All these impacts result in higher delivery and maintenance costs for climate resilient services. It is important to reckon with the fact that large areas in Maharashtra experience climate extremes such as prolonged droughts, cyclones and coastal flooding with adverse impacts on water supply, sanitation and hygiene. This is especially true for the rural areas. The State during 2015 received only 59.4% of the normal rainfall. Out of 355 talukas (excluding talukas in Mumbai City & Mumbai suburban districts) in the State; 278 received deficient; 75 received normal; and, two received excess rainfall. During kharif season of 2015, sowing was completed in 141.46 lac ha, six per cent less than the previous year (GoM, 2016). <sup>2.</sup> As reported by UNICEF (2016) on drought monitoring in Maharashtra during the summer of 2016, with surface storage fast drying up, the humans as well as the livestock reportedly resorted to the same available sources, mainly in the tribal belts. Multiple uses of drinking water sources including their use for washing and bathing, put these sources at risk of high contamination (UNICEF, 2016: p 45). Lack of adequate water was forcing people in the drought-affected regions to compromise on personal hygiene and environmental sanitation, despite awareness about it (LINICEE 2016: p 47) Table 1: Identified Factors Influencing Climate Induced Risk in Rural Water and Sanitation | Climate effect | Hazard | Impact on WASH sector | |----------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Decrease in precipitation | Drought | Reduction in raw water supplies, reduced flow in rivers, less dilution/increased concentration of pollutants in water, challenge to hygiene practices. | | Increase in precipitation and severe weather | Flooding | Contamination of well water, inundation of wells, inaccessibility of water sources, flooding of latrines, damage to infrastructure, landslides around water sources, sedimentation and turbidity, challenges to sustainability of *sanitation and hygiene behaviours, and waterborne diseases. | | Cyclones | High winds and Flooding | Damage to water supply infrastructure, water contamination, access to water supply sources becomes difficult | | Increase in temperature | Heatwave | Damage to infrastructure, increase in pathogens in water leading to increased risk of disease. | | | Melting and thawing of glaciers, snow, sea ice and frozen ground | Seasonality of river flows affected leading to a reduction in water availability in summer in the long run, while summer flows would increase in the short run. | | Sea-level rise | Flooding and saline intrusion into freshwater aquifers | Reduction in availability of drinking water, with high impacts on quality. | (Source: Global Water Partnership and UNICEF, 2014) people and system's ability to adapt and recover from negative effects of shocks and stresses (including natural disasters and climate change) in a manner that reduces vulnerability, protects livelihoods, accelerates and sustains recovery, and supports economic and social development, B. while preserving cultural integrity respect to the WASH sector, climate resilience requires a focus on: - A. A reduction in the effect of climate viduals; - Strengthening reliability of WASH services; - Resilience can be defined as the (Rance and Walmsley, 2014). With C. Strengthening Government cap acities and increase climate avresilience of communities overtime: and - change and related shocks onindi- D. Evolving strategic framework by Governments and their development partners to respond to growing demands brought about by the changing situations. ## 02. Strategic Framework for Climate ResilientWASH Development resilient WASH development is The strategic framework acknowledgpresented in Figure 5. The framework es the multi-level Governance strucis grounded on the core objective to tures inherent in the WASH sector. provide sustainable WASH service. It recognises that each level has a delivery, both at present and in the different part to play in WASH delivery future. The emphasis is on climate and that climate resilience needs resilient development, including to be addressed at all levels. The strengthening resilience of WASH framework advances sector thinking systems and on investments to around WASH and climate change. A strategic framework for climate well as long-term changes in climate. as a whole and it aims to inform and manage current climate variability, as It is a resource for the WASH sector reinforce existing planning processes, and is not a new process in itself. It highlights 'Why' climate resilient development is important and catalyses selected elements of 'What to do' in terms of action that can be taken now to strengthen resilience. Figure 5: Strategic Framework for Climate Resilient WASH Development (Source: Global Water Partnership and UNICEF, 2014) ## 03. Analysis of Disaster Reduction Approaches and Measures in India Authority (NDMA) is an agency of ment, communications, meteorolthe Ministry of Home Affairs whose ogy and natural sciences. Day-toprimary purpose is to coordinate response to natural or man-made disasters and for capacity-building in NDMA is operationally organized disaster resiliency and crisis response. NDMA was established through the & planning; mitigation; operations & Disaster Management Act (DMA) enacted by the Government of India in December 2005. The Prime Minister is the ex-officio chairperson of NDMA. The agency is responsible for framing policies, laying down guidelines and best-practices and coordinating with the State Disaster Management Authorities (SDMAs) to ensure a holistic and distributed approach to disaster management. The remainder of the board consists of members nominated at the State and local levels. based on their expertise in areas such National Disaster Management as, planning, infrastructure manageday management of the Agency is overseen by office of the Vice Chair. under the following divisions: policy communications; administration; and capacity building. > NDMA equips and trains Government officials, institutions and the community to mitigate and respond during a crisis or a disastersituation. It operates the National Institute of Disaster Management, which develops practices, delivers hands-on training and organizes drills for disaster management. It also equips and trains disaster management cells The National Disaster Response Force (NDRF) is a specialised force constituted "for the purpose of specialist response to a threatening disaster situation or disaster" under the Disaster Management Act, 2005. The Prime Minister is the Chairman of NDMA. The responsibility for Disaster Management in India's federal system is that of the State Government. The 'nodal Ministry' in the Central Government for management of natural disasters is the Ministry of Home Affairs (MHA). When 'calamities of severe nature' occur, the Central Government is responsible for providing aid and assistance to the affected State including deployment, at the State's request, of Armed Forces, Central Paramilitary Forces, NDRF, and communication, air and such other assets as are available and needed. ### 03.1 Indian Disaster Resource Network (IDRN) State database Government administrators and crisis response time in emergencies. The managers to coordinate effective system gives the location of specific emergency response operations in equipment /specialist resources as the shortest possible time. A web-en- well as controlling authority for that abled centralized IDRN database is resource so that it can be mobilized operational. The network enables for response in the shortest possible IDRN is a decision-making tool for guick access to resources to minimize time. The database is made available at the district, state and national levels and used for all emergencies and day-to-day operations (Gol. 2011: http://idrn.gov.in). ### 03.2 Standard Operating Procedure for responding to natural disasters-Rural drinking water supply and sanitation-2011 for management of disasters in the country. The Ministry of Drinking Water & Sanitation (MDWS) is responsible for providing technical and financial support to State RWSS/PHED/ Board while responding to natural calamities for restoration of damaged water supply and sanitation systems. At the National level, the Ministry The MDWS participates in all techniof Home Affairs and Ministry of cal coordination and linkages with Agriculture are the nodal ministries the State rural development departments, SDMAs, NGOs, international agencies, etc. At the National level, MDWS in coordination with concerned national and international agencies informs departmental contingency/ preparedness plans to concerned nodal officers in the National Disaster Management Authority to avoid or minimize overlap or duplication of efforts and improve coordination. All agencies involved in emergency relief and disaster management activities will have to operate within the framework laid down in the disaster management policy and other related laws, codes and Government notifications in force and guidelines issued from time to time (Gol, 2011). ### 03.3 Preparedness of preparedness is planning for all hazards. The plans have to be linked with those of other support depart- The MDWS must have disaster ments, and also at various levels. The MDWS is expected to technically disaster situations. It also maintains advice State PHED/RWSS Depart- a roster of personnel whose services ments about the equipment and might be required for making assessresources to be used for emergen- ment of disasters. Additionally, it cy provision of water and sanitation is expected to develop manuals on during a response. The MDWS also water conservation/recharging as identifies key institutions/resource part of preparedness measures. The centres/ATI's including those run MDWS is empowered to monitor by non-governmental agencies for the activities of the concerned State The most important component human resource development and training for the State Departments. management plans to tackle all Government Department dealing with rural water supply and sanitation. If necessary, MDWS can depute technical experts/officers to assist State RWSS Departments and also conduct a quick assessment of the situation. Financial assistance from the calamity fund can be allocated, subject to approved procedure, immediately in case of major emergency situations (GoM, n.d). 3. Disaster responses in the case of Agriculture Ministry ## 04. Existing Government Institutions in Maharashtra WASH Sector ### Agencies and organizational structures Maharashtra (GoM) is the State nodal agency for formulating, implementing, operating and maintaining regional water supply schemes in both rural and urban areas (Figure 6). The Groundwater Surveys and Development Agency and Sanitation Organization (WSSO) are the three line agencies supporting the Water Supply and Sanitation various schemes. Department. The GSDA is a technical agency (mostly consisting of geologists), and entrusted with the responsibility of overall development and management of groundwater. Its directorate is located in Pune, which is assisted by six regional and 33 district level offices. As per the GoM Resolution of 30th June 2003, there are MJP is planning, design, investigaa total of 1365 sanctioned posts in tion, detailed engineering, and execu-GSDA, including 892 technical and tion of water supply and sewerage 473 non-technical ones. In addition, schemes in the State, Additionally, Water Supply and Sanitation Depart- there are 869 posts which had been ment (WSSD), Government of transferred to ZP but are under the administrative control of GSDA. At present, GSDA employs professional and support staff in various disciplines including hydro-geology (with remote sensing & GIS specialization), chemistry, cartography, and field expertise. (GSDA), the Maharashtra Jeevan For more thanthe last 40 years GSDA Pradhikaran (MJP), and Water Supply is engaged in the exploration, development and augmentation of groundwater resources in the State through > MJP mainly consists of engineers and implements piped water supply schemes. The MJP with central office in Mumbai and Navi Mumbai has field offices spread across the State. Overall, there are five Zonal offices, 16 circle offices, 44 work/ project divisions and 151 sub-divisions. The primary responsibility of MJP arranges finances for these schemes. On successful completion of these projects, MJP hands them over to the respective local bodies. To settle the administrative expenses, MJP receives a fixed amount on total project costs which has been currently fixed by GoM at 17.5% of the value of projects. As per the Government Resolution (GR) of June 2003, some of the functions and functionaries of the GSDA and MJP were transferred to Zilla Parishads (ZP). The Water Supply Department of Zilla Parishads mainly comprises these transferred functionaries and is responsible for implementing water supply and sanitation reform programmes. A Reform Support and Project Management Unit (RSPMU) was also set up in order to facilitate the RWSS reforms process. The RSPMU operates at the State and the district level. Figure 6: Organogram of Water Resources Department, Government of Maharashtra (Source: UNICEF/IRAP. 2013) In order to successfully implement bilities of WSSO include preparing State level and national level rural water supply programme in the State of Maharashtra as per guidelines of local organizations in planning and the Central Government and implement and monitor rural water supply programmes in general, the Government has decided to establish State level Water Supply and Sanitation Organization. The main responsi- supply and sanitation programmes. annual action plan, providing technical and administrative assistance to implementation of schemes, develop-Education (ICE), and also developing (MIS) for monitoring of rural water The WSSO is responsible for implementing the policy guidelines of rural water supply and sanitation Programmes and State Water Supply Mission. It will act as the Directorate ing Information, Communication and for water supply and sanitation department in all respects. The organiza-Management Information System tion was formed in 2009 and is still evolvina. ### 4.2 Supply and cost norms for rural water supply and sanitation schemes As per the GoM Resolution dated 27 no source within 1.6 km in plain area July 2000, delivery of 40 litres per and 100 m elevation in hilly area were capita per day (lpcd) was established selected to be covered by the RWSP. as a water supply norm for the rural The 12th Finance Plan approach areas. From within this, three litres are suggests enhancement in per capita to be provided for drinking purpose, supply from 40 lpcd to 55 lpcd for five litres for cooking, 15 litres for rural areas. However, GoM continbathing, seven litre for washing ues to use the norm of 40 lpcd citing utensils and house, and 10 litres for groundwater scarcity. The Water ablution. Villages or habitations with Quality Standards as per IS: 10500 Bank, 2012). are followed in the context. Regarding the cost norms for implementing piped water supply schemes across the State, GoM has recommended standards in 1999 (Table 6). Since then, these norms have not been revised and no provision for inflation was made to be considered while planning the new schemes (World **Table 6:** Cost norms for implementing piped water supply schemes in Maharashtra | Type of Scheme | Cost Norms in F | Cost Norms in Rs. Per Capita | | | | | | |---------------------------------------|-----------------|------------------------------|--|--|--|--|--| | | Non-Konkan Area | Konkan Area | | | | | | | Hilly Areas | 2 ,120 | 2,320 | | | | | | | PWS with static lift of more than 30m | 1,790 | 1,970 | | | | | | | PWS with static lift up to 30m | 1,390 | 1,530 | | | | | | (Source: World Bank, 2012) ### Administrative procedures Once a rural water supply schemes is MJP is in charge of execution and planned, its implementation is taken role of GP is confined to operation up with administrative approval and and maintenance. For multi-village technical sanction of the designat- schemes costing up to Rs. 25 million, ed authorities. For a single village ZP is responsible for the entire execupiped scheme up to 50 Million, GP tion and role of GP is confined to O has the responsibility to execute with & M, and that too under the technical the technical support from ZP and supervision of ZP. For the multi-village MJP. MJP. Whereas for the single village schemes above 25 million, responsischemes costing above Rs. 50 million, bility of execution shifts to MJP. Here again role of GP is restricted to O&M of the system. Thus, it is quite clear that the role of GP/VWSC is mainly restricted to O&M of the schemes. For the project with high cost, even the O&M function is performed under the technical supervision of ZP or ### Legal and policy framework relating to rural water supply and sanitation GoM established Groundwater Survey Act, Maharashtra Water Supply and and Development Agency (GSDA) in 1972 to scientifically tap groundwater resources in the State. Soon after, the Maharashtra Water Supply ing (PHE) department of GoM. and Sewerage Board Act (MWSSB Sewerage Board (MWSSB) was set up in 1977 to take over the functions and assets of the Public Health Engineer- to depend on tankers to meet their Act) was passed in 1976. Under the Due to groundwater over-exploitation and resulting water scarcity in many areas during 1990s, a large number of settlements in Maharashtra had drinking water needs, especially during summer months. In order to manage the groundwater for protection of Maharashtra Groundwater (Regulation for Drinking Water Purposes) Act. was passed in 1993. The Act prohibited construction of wells within a radius of 500m from a public drinking water source, if both are in the area of the same watershed. Further, the Act empowered the appropriate authority (District Collector in this case) to restrict or prohibit extraction of water (for any purpose other than for drinking) from any well in an identified 'water scarce' area (as advised by GSDA) during the scarcity period, if ter of prescribed quality, for various such well is within a distance of one kilometer from the public drinking water source (GoM, 1993). However, the Act was not preventive but only corrective in nature (Phansalkar and Kher, 2006). situation attributed the drinking water scarcity problems to inadequate infrastructure development and to the excessive dependence on unreliable sources. Further it identified the need for massive capital investments for developing the required infrastructure for fulfilling the drinking water requirements of the State. As a result, the then State Government amended the MWSSB Act and established Maharashtra Jeevan Pradhikaran of 1993, which empowered the (MJP), a statutory body constitut- District Collector in consultation with ed from erstwhile MWSSB in 1997, a technical officer to notify the area giving the State GoM authority to as 'over-exploited' or 'water scarce', raise capital from the open market. the new groundwater Act empowers With the help of the MJP and the the State Groundwater Authority to GSDA, GoM embarked on a mission notify an area but only on the basis to provide sustainable water supplies of: recommendations from the GSDA; for both urban and rural areas. In 2003, views of various institutions working Maharashtra became one of the few in groundwater field; and views of State States in India to adopt State Water the users of the groundwater of the public drinking water sources, the Policy. It laid emphasis on management, operation, and maintenance of has to be based on scientific studies these services by community level organizations and appropriate local level bodies (GoM, 2003). tra Groundwater (Management and Development) Act 2009, which replaced the groundwater Act of 1993. This new Act is more comprehensive and aims at "facilitating and ensuring sustainable equitable and adequate supply of groundwacategory of users, through supply and demand management measures, protecting public drinking water sources and establishing the State Groundwater and District Level Authority to manage and to regulate, with community participation, the The White Paper on the State's water exploitation of groundwater within the State of Maharashtra". As per the section 3(1) of the Act, the Maharashtra Water Resources Regulatory Authority (established under section 3 of the Maharashtra Water Resources Regulatory Authority Act, 2005) shall be the State Groundwater Authority. GSDA has also been provided with more footholds under the Act. area. The decision to notify an area on groundwater balance and quality: and groundwater estimation. The Act calls for establishment of a Watershed Water Resources Committee In 2013, GoM passed the Maharash- (WWRC) to promote and regulate development and management of groundwater in the notified area. The Act envisaged several restrictions such as, ban on construction of wells; prohibition on groundwater pumping from the existing deep-wells (more than sixty metre deep); stipulation on deep-well users to follow the groundwater use plan, and crop plan. All these measures are now in operation in notified areas. Unlike the earlier Act which was silent on groundwater quality, the new Act puts emphasis on protection and preservation of groundwater quality of all the existing drinking water sources in the State. Further, in both notified and un-notified areas, registration of well owners is made mandatory (section 7 of the Act), and drilling deep wells for agriculture and industrial use is prohibited (section 8.1 of the Act). Additionally, section 12 of the Act made it compulsory for registration of drilling rig owners and operators in the State. In contrast to the Groundwater Act The Act also empowers the District Authority (officer not below the rank of Tahsildar) to enforce the decisions of WWRC. Though, Maharashtra Groundwater (Management and Development) Act 2009 is a major improvement over the earlier Act, its effectiveness in arresting groundwater exploitation can only be judged once it is implemented across the ## 05. Overview of Disaster Management Measures in Maharashtra All State Governments are mandated no more than eight members appointunder Section 14 of the DMA, 2005, ed by the Chief Minister. The State to establish a State Disaster Manage- Executive Committee is responsible ment Authority (SDMA). SDMA (as per section 22 of the DMA, 2005) consists of Chief Minister of the for drawing up the State Disaster State, who is the Chairperson, and Management Plan, and implementing the National Plan. SDMA is mandated under section 28 of the DMA, 2005, to ensure that all the departments of the State prepare Disaster Management Plans as prescribed by the National and State Authorities (GoM, n.d). ### 05.1 Institutional preparedness and programmes to check climate-induced hazards in Maharashtra #### 05.1.1 Institutional arrangement for disaster management Figure 7: Institutional Arrangement for Disaster Management in (Source: GoM, n.d) <sup>4.</sup> For instance, the provisions of the Act were only enforceable either in watersheds declared as 'overexploited or if a specific locality was notified as scarcity affected in a particular year. There were no provisions for registration of wells or for making applications mandatory for sinking new wells. It did not even provide for compulsory licensing of drilling companies or agencies (Phansalkar and Kher, 2003). Maharashtra SDMA was constituted tion Centre (EOC) was established. on 24th May 2006. SDMA is chaired A separate State Disaster Response by the State Chief Minister, and the Force (SDRF) for effective response State Deputy Chief Minister is the during disasters was also constituted vice-chairperson. Its other members include three state ministers, three unofficial members and the State Chief Secretary who is also the Chief Executive Officer. Simultaneously State Executive Committee (SEC) wing of SDMA. SEC also acts as the coordinating and monitoring body State. For effective communication disaster, State Emergency Opera- (DMU, n. d). Secretariat for both SDMA and SEC the State EOC, DDMA is responsiwas established under the chairman- ble for preparedness and mitigation ship of Additional Chief Secretary at the district level. The district level (Relief and Rehabilitation). Initially, response is co-ordinated under the was formed as an implementation Relief and Rehabilitation Division guidance of the District Collector, who under the Revenue and Forest acts as a District Disaster Manager Department, GoM, was appointed as (GoM, n. d). for management of disaster in the the nodal agency for disaster management in the State. Later a separate and information management during Relief and Rehabilitation Department (RRD), GoM, was formed. Each district also has a District Disaster Management Authority (DDMA) and District EOC. While SDMA is responsible for policy/ decisions making, resource/budget allocation and monitoring through #### 05.1.2 Maharashtra State Disaster Management Plan to prepare a comprehensive State hazard, risk and vulnerability analysis Disaster Management Plan (SDMP) for various districts, talukas within which was approved in April, 2016. these districts, and clusters of villages The SDMP was prepared by the in these districts to earthquakes, Maharashtra is one of the first States RRD, GoM. The plan also contains road accidents, chemical and industrial disasters. A separate volume on Standard Operating Procedures (SOP) was also prepared which include the manuals for various departments to Disaster Management Unit (DMU) at floods and cyclones, epidemics, be activated during an emergency (GoM, n. d). ### 05.2. Measures to reduce exposure of WASH systems to climate induced hazards Maharashtra SDMP various structural and non-structur- hazards. These measures are intended al measures and the responsible line to shield assets from exposure, injury departments intended to reduce risks or destruction. Some of the proposed mentions that arise from climate related natural measures for hazards, such as floods and droughts, including departments responsible for implementing these actions are presented in Table 7 and Table 8. Table 7: Proposed Structural and non-structural Measures to Reduce Exposure to Floods | S. No | Task | Activities | Responsibilities | |-------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------| | Α | Structural Measures | | | | 1 | Construction Works | <ul> <li>Construction of dams, flood protection wall, flood diverting channels</li> <li>Improvement of design for irrigation and flood protective structures</li> <li>Strengthening/repair of existing roads and bridges and other critical infrastructure in flood plain</li> </ul> | <ul> <li>Revenue Dept.</li> <li>Secretary, R &amp; R</li> <li>Irrigation Dept.</li> <li>PWD Dept.</li> <li>All line Depts.</li> </ul> | | | | Strengthening of dams and canals | | | 2. | Development of catchment area | Development of catchment area of the flood plain<br>through forestation, land sloping, small reser-<br>voirs/check dams/ponds etc. | <ul><li>Revenue Dept.</li><li>Irrigation Dept.</li><li>Forest &amp; Environment Dept.</li></ul> | | S. No | Task | Activities | Responsibilities | |-------|-------------------------|----------------------------------------------------------------------------------|--------------------------------------| | В | Non-structural Measures | | | | 1. | Forecasting and warning | Strengthening and up gradation of existing flood | <ul><li>Director DMU</li></ul> | | | | forecasting system | ■ Irrigation Dept | | | | <ul> <li>Establish infrastructure for flood warning and dissemination</li> </ul> | CWC | | | | uissemmation | ■ IMD | | 2. | Techno-legal regime | ■ Enactment and enforcement of laws regulating | Revenue Dept. | | | | developmental activities in flood plain | Secretary R & R | | | | <ul><li>Specific building by-laws for flood plains</li></ul> | ■ Irrigation Dept. | | | | | ■ UD Dept, Panchayat & Rural Housing | | | | | Local Urban Bodies | It is interesting to note that most of the drought prone regions of the State recommended structural measures capture runoff from the small local on flood and drought proofing have a catchments. These are being used by major emphasis on the irrigation infra- the farmers to pump and store groundstructure (including crop security). water and adversely affecting water Water supply and sanitation systems availability for domestic uses from are not mentioned specifically, as infra-wells (Kale, 2017). Thus, these interstructure to be protected in the event ventions only increase the exposure of floods. Another important concern of WASH systems during droughts. relate to the role of small water harvesting structures in climate resil- The institutions in-charge of planning ience of WASH systems. While check developing and managing rural water dams store some runoff in the small supply and sanitation systems such as reservoirs which recharge shallow the Groundwater Surveys and Develgroundwater in the area, this is mainly opment Agency, the Maharashtra benefiting the irrigators whose wells Jeevan Pradhikaran, and the Water get replenished. Farm ponds that are Supply and Sanitation Organizaconstructed in large numbers in the tion are mentioned as the agencies refer Table 7 and Table 8). responsible for handling disaster situations. Lack of integration of these institutions associated with provision of WASH services in rural Maharashtra with the SDMP results in institutions having a limited role in preventing or reducing the exposure of WASH systems to climate induced hazards such as hydrological droughts and floods. The non-structural measures lay emphasis on strengthening of flood and drought forecasting, warning and dissemination systems. However, its linkages with rural water supply and sanitations systems is missing (please Table 8: Proposed Structural and non-structural Measures to Reduce Exposure to Droughts | S. No | Task | Activities | Responsibilities | |-------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------| | Α | Structural Measures | | | | 1 | Construction | <ul> <li>Construction of dams, reservoirs, lift irrigation, water sheds, tube wells and canals for surface irrigation</li> <li>Construction of percolation tanks, check dams, farm ponds, etc.</li> <li>Construction of warehouses and cold storages for preservation/storage of food grains.</li> </ul> | <ul> <li>Revenue Dept.</li> <li>Secretary R &amp; R</li> <li>Irrigation Dept</li> <li>Agriculture Dept.</li> <li>Civil Supply Dept.</li> </ul> | | S. No | Task | Activities | Responsibilities | |-------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------| | 2. | Repair, up gradation and strengthening | <ul> <li>Repairs, upgrading and strengthening of dams, reservoirs, lift irrigation and canals for surface irrigation</li> <li>Repair, upgrading and strengthening of percolation tanks, check dams, farm ponds, etc.</li> </ul> | <ul><li>Revenue Dept.</li><li>Secretary R &amp; R</li><li>Irrigation Dept</li><li>Agriculture Dept.</li></ul> | | 3. | Adaptation of new technology | <ul> <li>Application of advanced agro-science technology<br/>and agro-engineering inputs to improve agricul-<br/>ture production</li> </ul> | <ul><li>Revenue Dept.</li><li>Secretary. R &amp; R</li><li>Agriculture Dept.</li></ul> | | В | Non-Structural Measures | | | | 1. | Techno-legal regime | Enactment and enforcement of laws regulating<br>ground water level and exploitation of natural<br>resources. | <ul> <li>Revenue Dept.</li> <li>Secretary-R &amp; R</li> <li>Irrigation Dept.</li> <li>UD Dept,</li> <li>Panchayat</li> <li>Urban Local Bodies</li> </ul> | | 2. | Forecasting and Warning | <ul> <li>Strengthening and up gradation of existing drought forecasting system</li> <li>Establish infrastructure for drought warning and dissemination</li> </ul> | <ul><li>Revenue Dept. Director DMU</li><li>Irrigation Dept</li><li>IMD</li></ul> | (Source: Maharashtra State Disaster Management Plan) ### 5.3 Measures to reduce community vulnerability to climate-induced hazards Most of the measures to reduce The ideas such as promoting water vulnerability of communities to harvesting and encouraging farmers the area under irrigation. Similarclimate-induced hazards are based to go for water-efficient crops, as on capacity building and awareness capacity building measures to deal programmes (Table 4). As is the case with droughts (see Table 9) are also with measures to reduce exposure, ill-conceived. As regards the former, of making Maharashtra 'a droughtthere is no specific activity to reduce the reason is that during droughts, community vulnerability to damaged water harvesting systems fail, given water supply and sanitation systems, the unique hydrological settings of construction of cement and earthen or inadequate water supply (reduced regions, which experience droughts availability of water for drinking and (Kumar et al., 2008). As to the latter, other domestic purposes or water farmers have no special incentive to contamination) and poor sanitation. switch to water-efficient crops, given Most of these measures relate to the existing institutional and policy rescue operations (in case of floods) environment governing water use and supporting agricultural produce (in in agriculture, and even if they do, it case of droughts). cannot ensure sufficient water for domestic sector as they can expand ly, the ideas such as the 'Jalyukta Shivar Abhiyan' launched by the State Government recently with the aims free State by 2019' (which involves deepening and widening of streams, stop dams, works on nullahs and digging of farm ponds (GoM, 2016: p 10)) have no scientific footing. Table 9: Various Measures to Reduce Community Vulnerability to Climate Induced Hazards | S. No | Task | Activities | Responsibilities | |-------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------| | Α | During Floods | | | | 1 | Capacity Building | <ul> <li>Ensure flood search and rescue materials are purchased and kept at local level</li> <li>Departmental flood contingency plan</li> <li>Flood related departmental action plan and SOP</li> <li>Imparting training to the stakeholders involved in flood mitigation and management</li> <li>Organize mock drills on flood rescue</li> </ul> | <ul><li>Revenue Dept.</li><li>Director DMU</li><li>Irrigation Dept</li><li>Line Dept.</li></ul> | | 2. | Awareness | <ul> <li>Dissemination of flood risk to general public residing in flood prone areas</li> <li>Campaign for flood safety tips</li> <li>Develop IEC materials on dos and don'ts</li> </ul> | <ul> <li>Revenue Dept.</li> <li>Director DMU</li> <li>Irrigation Dept</li> <li>SDMA</li> <li>Information Dept.</li> <li>Line Dept.</li> </ul> | | S. No | Task | Activities Responsibilities | | | | |-------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--| | В | During Droughts | | | | | | 1. | Capacity Building | <ul> <li>Departmental drought contingency plan</li> <li>Drought related departmental action plan and SOP</li> <li>Imparting training to the stakeholders involved in drought mitigation and management</li> <li>Encourage people to use advance technology for drip and sprinkler irrigation</li> <li>Encourage water harvesting</li> <li>Encourage farmers to understand crop pattern to be adapted in their areas.</li> </ul> | <ul> <li>Revenue Dept.</li> <li>Director DMU</li> <li>Irrigation Dept.</li> <li>Agriculture Dept.</li> <li>Forest &amp; Environment Dept.</li> <li>Rural Development</li> <li>All line Dept.</li> </ul> | | | | | | <ul> <li>Rational use of fertilizers and pesticides.</li> <li>Encourage the adaptation of technique for preservation of green folder</li> </ul> | | | | | 2. | Awareness | <ul> <li>Dissemination of drought risk to general public residing in drought prone zones</li> <li>Campaign for drought tips for agriculture, general public and industries</li> <li>Motivate farmers to adapt the drought resistant crops, new technology and off-farming activities</li> </ul> | <ul> <li>SDMA</li> <li>Revenue Dept.</li> <li>Director DMU Irrigation Dept</li> <li>Agriculture Dept.</li> <li>Information Dept.</li> <li>All line Dept.</li> </ul> | | | (Source: Maharashtra State Disaster Management Plan) Further, during any disaster, finan- to reduce the vulnerability of commucial aid is provided to the affected community in the State through the Natural Calamity Relief Fund. Under this head, relief is provided to compensate for human loss, death of tion of "The High Level Committee animals and damaged crops and for repairing damaged houses, purchasing utensils, food items, clothes and necessary household goods (Kumar and van Dam. 2013). State Disaster Mitigation Fund to all 35 districts and 10 Regional Disaster Management Centres (RDMCs) working for city areas for strengthening EOCs and purchasing search nities depending on them during climate-induced hazards. on Balanced Regional Development Issues in Maharashtra", the funds about Rs 28,608 crore (GoM, 2013). Vidarbha requires about 22.5% and The State Government also provides Marathwada about 23% of the total to Table 10 for more details). The water supply and sanitation systems tra Jeevan Pradhikaran norm of Rs tion would be high in such climates. 137 per cubic metre of development of new water supply infrastructure. One recommendation of the Commit-As per the recommendatee, which is important from the perspective of climate resilience, is that it had considered a water supply level of 140 lpcd for rural as well as required for additional water supply urban areas, while working out the infrastructure in Maharashtra is investment needs in water supply sector. This marks a major departure from the past trend of using the norm of keeping 40 lpcd of water for rural proposed fund allocation (please refer areas, and up to a maximum of 55 lpcd in case of special projects. This financial provisions for the required is far less than what is required to level of water supply are worked out meet the basic needs of rural HHs in considering the water supply gap hot and arid climates, which includes and rescue equipment, organizing between 2011 and 2030, based on the productive need of watering capacity building training programmes the norm of minimum water supply of animals (IRAP, GSDA & UNICEF, and awareness programmes for 140 litres per day per capita for both 2013). There are two reasons for this. various target groups. However, no rural (including livestock water needs) First: the water requirements per specific financial aid is provided for and urban areas; and, the Maharash- unit of human and livestock populaSecond: livestock rearing is becoming to water-rich regions, given the poor a dominant economic activity of rural areas in such climatic zones, increasdemand of HHs. requires special attention is that the tion of larger amount of funds to such cost of water supply per unit volume of regions than what is demanded by water supplied would be much higher the gap in infrastructure. The droughtin water-scarce regions as compared prone regions such as Marathwada dependability of water from internal sources and the need for importing ing the average per capita water water from exogenous sources for meeting the demands on a sustainable basis (Kumar, 2014) . Going by However, an important issue that this analysis, we would require alloca- and Vidarbha would require larger amount of funds per cubic metre of water supplied to meet the drinking water supply requirement in future. In view of this, the State also needs to allocate a greater proportion of its budget towards increasing climate resilience of existing WASH systems in rural Marathwada and Vidarbha. Table 10: Proposed Financial Provision for Drinking Water Sector in Maharashtra | S. No. | Water Sector | Funds required in different regions of the State (in Rs crore) | | | | | | | |--------|---------------------------------------|----------------------------------------------------------------|--------|------|------------|----------|--------|-------| | | components | Konkan | Nashik | Pune | Aurangabad | Amravati | Nagpur | State | | 1. | Rural water supply | 706 | 706 | 661 | 564 | 154 | 321 | 3112 | | 2. | Urban water supply | 4343 | 2086 | 4594 | 5280 | 3128 | 1993 | 21424 | | 3. | Highly water stressed talukas | 0 | 531 | 767 | 450 | 50 | 0 | 1798 | | 4. | Talukas of unfavour-<br>able strata | 724 | 258 | 243 | 290 | 59 | 158 | 1732 | | 5. | Water supply schemes for saline areas | 0 | 0 | 0 | 0 | 542 | 0 | 542 | | | Overall | 5773 | 3581 | 6265 | 6584 | 3933 | 2472 | 28608 | 5. This was illustrated by an empirical analysis of 301 cities and towns in India. (Source: GoM, 2013) ## Creating Enabling Environments for Improving Climate Resilience of WASH Systems in Maharashtra #### Capacity building Creating an enabling environment is Building fundamental to making sustainable changes in the WASH sector. To improve climate resilience of WASH systems, capacity needs to be built at all levels - - ☐ Central Ministry of Drinking Water and Sanitation. - ☐ State State Government Agencies dealing with water supply & sanitation such as MJP, GSDA and WSSO, the State Disaster Management Agency. the State level NGOs, - District District administration. Gram Panchayats and the water users who are the primary stakeholders. The following are the measures that can be taken in the context: i) knowledge generation through training and education; ii) knowledge dissemination; and, iii) informed action through pilot projects. These should include the following: - partnerships engaging stakeholders to support more resilient development and avoid conflicts and inequalities. - ☐ Decision-makers should use local case studies, adopt simple language, and encourage interaction in the capacity development programme, and also ensure that the learning material is accessible to a wide range of participants. - various stakeholders in implementation of the capacity development programmes. Programme has to be adaptive, and has to engage and communicate with stakeholders on a continuous basis. - Media involvement is also very important. Along with training and education, institutional capacities are to be developed at various levels, in order to ensure that climate change variables are effectively integrated into planning of water supply and sanitation systems. The past literature on the topic has, however, focused on the capacity building of local institutions such as the Gram Panchavats, the Watershed Committees and the village Self Help Groups for reducing the exposure and vulnerability to droughts. Again, the emphasis has been on improving the effectiveness of MNREGS (Mahatma Gandhi Rural Employment Guarantee Scheme) and watershed development Maintaining commitment of the activities implemented under National Watershed Development Programme (NWDP) through greater convergence (See Vedeld et al., 2014). > Some of the possible measures and the required inputs to improve climate resilience of WASH systems are presented in Table 11. These measures fall under three categories namely, capacity building of stakeholders, technical interventions, and disaster preparedness. #### Table 11: Capacity Building Measures in WASH #### Capacity building of stakeholders - Support for diversification of water supply from HH to municipal levels. - Promotion of advocacy for waste water recycling at HH and city wide levels to reduce demand on stressed water sources. - Promotion of advocacy for increasing multi-annual storage through surface reservoirs in drought prone areas and increasing flood cushioning in flood prone areas. - Training of hydrologists on climate modelling to predict the changes in hydrology of river basins due to climate variability and change - Training of engineers in WRD on design and operation of reservoirs for greater flood cushioning (for flood prone areas); and design of reservoirs for enhanced multi-annual storage (for drought prone areas) | Capacity building of stakeholders (Continued) | • | Training of water supply engineers on designingwater supply systems resilient to reduced water flows due to climate variability (particularly droughts) decentralized desalination systems, leakage detection & prevention measures in pipelines; and design and operation of decentralized WWT systems. | |-----------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | • | Training of sanitation engineers on designing sanitation infrastructure which pose least environmental pollution risk to groundwater | | | • | Training of water supply engineers on design of cyclone- resistant infrastructure such as water distribution pipelines, overhead water tanks, etc. | | | | Establish and undertake capacity building of local water committees for maintenance and resource management. | | Disaster preparedness | • | Raising awareness among local communities about disaster and climate change risk, through education and training programmes. | | | • | Provision of training and equipment to local and municipal disaster response personnel. | | | | Support for development of community level early warning and evacuation systems using appropriate media and technology. | | Technical interventions | • | Rehabilitate damaged water distribution networks using hazard-and stress-resilient materials and designs. | | | • | Building surface reservoirs with enhanced capacity for multi-annual storage of inflows | | | • | Building projects for transfer of water from water-rich Western Ghat region to chronically drought-hit Marathwada region | | | • | Raised hand-pumps and well-head protection in flood-prone areas, to ensure continuity of access to water during flooding. | | | • | Rain water harvesting and storage systems for populations in areas without piped water, but receiving heavy rainfall over long time periods. | | | • | Building of 1) decentralized desalination systems in coastal areas not served by piped water supply schemes, run by solar power; 2) decentralized wastewater treatment systems | | | | De-silting of water troughs for use by livestock during drought. | | | | Promotion of household water filters and education on their use. | | | • | Raised latrines placed at a safe distance from water sources to prevent overflow and contamination during flooding. | | | • | Hygiene and hand-washing campaigns among at-risk populations. | | | • | Cleaning-up of drainage canals prior to predicted tropical storms and flash floods. | | | | | The principles that need to be followed for disaster risk reduction related to climate and the guidance for applying the same, as proposed by Turnbull et al. (2013) are given below. A. Increase understanding of climate induced hazard and identify the projected effects of climate change on water availability at a wider geographical scale, as well as in the project location. Analyse the hazard profile of the programme location using the B. best available information on how hydro-meteorological hazards are likely to be affected by climate change. In the context of Maharashtra, the specific climate hazards which need to be profiled at the regional scale are droughts, showing their frequency and intensity, and the likely impact on surface runoff and groundwater recharge. Increase understanding and vulnerability exposure and also the capacity to adapt. Assess the extent to which current WASH systems in the programme location are exposed to hazards and to the projected impacts of climate change on surface and groundwater sources. Assess the degree of access of the target population to water and sanitation services, its impact on their health and nutritional status, - and how it changes their vulnerability to hazards and the effects of climate variability. A climate risk assessment mapping, similar to what is being done under this project in two divisions of Maharashtra, for the entire State is required. - C. Recognize rights and responsibilities. Share the results of climate risk assessment mapping with the population that are vulnerable and other relevant stakeholders such as private companies contracted to provide WASH services. Raise awareness among at-risk populations of their rights to water and sanitation and how these are affected by climate G. induced disasters. - D. Strengthen participation of, and action by, population at risk. Develop the capacity of local health personnel to provide information on measures to take before, during and after common hazards. Support the formation of WASH committees within at-risk populations; and train them to monitor and maintain WASH systems and to negotiate with the State level line agencies in the WASH sector. - E. Promote systemic engagement and change. Advocate for the - engagement of WASH actors (Governmental, non-governmental and private sector) in national platforms/forums for disaster risk reduction and climate change adaptation. - F. Foster synergy amongst multiple levels.Identify national laws and policies relevant to WASH issues and climate and disaster risk mitigation, support the populations at risk to advocate for their implementation. Promote coordination between all water users and authorities within river basin catchments and aquifer recharge zones. - Draw on and build diverse sources of knowledge. Before designing interventions, obtain technical assessments of current groundwater and surface water sources, and the potential impact of climate change on them. Share examples of hazard- and climate-resilient WASH systems in other locations, to encourage replication where appropriate. - Instil flexibility and responsiveness. in the design/retrofit of WASH systems to be functional in a range of predicted climate scenarios. Promote systematic monitoring of WASH installations following hazards and in different - climatic conditions, and undertake/advocate for improvements where necessary. - Address different time scales. Support users and service providers to identify early warning indicators for hazards that may affect WASH systems, and to develop contingency plans. Reduce longer-term vulnerability and exposure by combining emergency measures and the development of sustainable, resilient systems in post-disaster WASH interventions. - J. Do No Harm. Undertake an environmental impact assessment prior to any WASH intervention; systematically monitor the potability of sources being tapped for drinking water supply (surface and groundwater) to prevent consumption of contaminated water. Promote communication and coordination between different water user groups (sav between irrigators and domestic water users in urban areas) whose access to water is likely to be affected by climate variability and change. Source: adapted from Turnbull et al. (2013) ### 6.2. Training Plan for the Line Agencies Training for human resource develop- training plan, covering various themes WASH is furnished in Table 12. ment is one of the important instru- mentioned under the capacity building ments for capacity building. A detailed programme for climate resilience in Table 12: Training Plan with Theme, Objectives, Topics and Target Audience | S. No | Training<br>Theme | Topics to be Covered | Objectives | Target<br>Audience | Agency | Proposed<br>Duration<br>(days) | |-------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------|--------------------------------| | 1 | Hydrological<br>modelling of<br>river basins for<br>climate change<br>scenarios | Basin characterisation; Identifying key water management issues; Selection of appropriate hydrological models for gauged and un-gauged catchments; Identifying data requirements; Establishing conceptual rainfall-runoff models; Developing base case; Analysis of historical trends in rainfall & climate; Generating scenarios to assess impact of climate variability and change. | To orient the water engineers to the concept of hydrological modelling, for different types of stresses, including climate variability and change; Equip them with skills for choosing appropriate models for different situations; Strengthen their skills for analysis of basic data for setting up hydrological models | Civil<br>Engineers<br>(preferably<br>Hydrologists)<br>at the level of<br>AEE and EE | Water<br>Resources<br>Department | 3 days | | 2 | Flood Manage-<br>ment | Integrated flood management; Estimation of design flood; Computation of carrying capacity of rivers; Relationship between flood discharge and flood damage; Structural design of flood control counter-measures (such as reservoirs in flood prone areas); alignment of existing structures and river channel improvement; Non-structural measures (flood forecasting); Preparation of flood management plan; Integrating WASH systems in flood management planning. | To orient the water engineers to the concept of IFM; Equip them with skills for assessing flood hazards; Inform them about various measures for integrated flood management, including structural; Inform about measures for making WASH systems flood proof | Civil Engineers Hydrologists working in the Flood Control wings at the level of AEE and EE | Water<br>Resources<br>Department | 7 days | | S. No | Training<br>Theme | Topics to be Covered | Objectives | Target<br>Audience | Agency | Proposed<br>Duration<br>(days) | |-------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------| | 3 | Drought<br>Proofing | Need for drought-proofing plan; Statistical analysis to determine the frequency of meteorological droughts; Use of drought prediction tools; Drought assessment and prediction; Groundwater behaviour in hard rock regions; Design of reservoirs to increase the multi annual storage of inflows; Ascertaining technical feasibility and economic viability of regional water transfers; Preparation of drought management plan | To orient the professionals to the concept of drought-proofing; Strengthen their ability to carry out analysis of meteorological data, for assessing droughts; Equip them with skills for using drought prediction tools; Informing about design considerations for planning reservoirs for multi annual storage | Senior Geologists; AEEs and EEs working in Water Supply & Sanitation Dept., AEEs and EEs working in WRD and middle level officials in disaster management | MJP/GSDA/<br>WRD/<br>SDMA | 7 days | | 4 | Leakage detection and prevention in water distribution pipes of regional water supply systems | Methods of leakage detection and measurement in pipelines; Leakage management strategy including early detection & repair, and community role; Leakage monitoring and control; Measures for leakage prevention; Economics of leakage prevention | Equip the engineers in the water supply dept. with skills for leakage detection and leakage estimation; Inform them about various engineering measures for leakage prevention; Orient them to the concept of economic efficiency in leakage prevention | AEEs, and<br>EEs working<br>in water<br>supply &<br>sanitation<br>department | MJP | 5 days | | 5 | Design and operation of decentralized desalination systems | Introduction to different types of desalination technologies; Renewable energy driven decentralized desalination systems; Region identification and site selection; Government policies and programmes; Economic evaluation of decentralised desalination systems; Installation and commissioning; operation and maintenance including community role | Inform the rural water supply engineers about various desalination technologies; Equip them with skills for technology selection to suit different situations; Equip them with skills for system design; Inform them about the operation and maintenance aspects | AEEs, and<br>EEs working<br>in water<br>supply and<br>sanitation<br>department | MJP | 7 days | | 6 | Design of<br>sustainable rural<br>water supply<br>systems for<br>multiple uses | Introduction to multiple use water systems; Design considerations for water supply systems for domestic and productive uses; Different techno-institutional models for sustainable water supply in rural areas; Retrofitting of existing water systems for multiple uses | Orient the rural water supply engineers to the concept of multiple uses; Inform them about various criteria for design of MUWS; Equip them with skills for designing sustainable water systems in different situations | EEs and<br>Superin-<br>tend-ing<br>Engineers<br>working in<br>water supply<br>& sanitation<br>departments | MJP | 5 days | | S. No | Training<br>Theme | Topics to be Covered | Objectives | Target<br>Audience | Agency | Proposed<br>Duration<br>(days) | |-------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------| | 7 | Design of<br>ecologically<br>sound sanitation<br>infrastructure | Linkage between climate, ecology and health impacts of onsite sanitation; Concept of ecologically sound on-site sanitation systems; Toilet technologies for flood-prone areas and high water table areas; Toilet technologies for black cotton soils & hard rock strata | Orient the sanitation engineers to the concept of ecologically sound sanitation; Inform them about the criteria for design of ecologically sound sanitation systems; Strengthen their skills to build ecologically sound sanitation systems for difficult areas | AEEs and<br>EEs working<br>in WSSO<br>Middle level<br>officials<br>of NGOs<br>working on<br>rural sanita-<br>tion | WSSO | 5 days | | 8 | Planning, design,<br>execution and<br>operation of<br>wastewater<br>treatment<br>systems | Physical and economic criteria for technology selection in WWT systems; Technology and site selection; Design of WWT systems; Construction; Cost and energy requirements; Operation and maintenance | Inform water supply and sanitation engineers about the criteria for selection of WWT technologies; Equip them with skills for design of WWT systems; Inform about the O & M aspects | Environmen-<br>tal Engineers<br>working with<br>water supply<br>and sanita-<br>tion depart-<br>ment | MJP/ WRD<br>of ZP | 5 days | (Source: Based on: IRAP 's own analysis; Farley 2001; JICA 2003; NDMA 2010; WaterAid 2011; CPHEEO and JICA 2012; Kumar, 2014; GSDA/IRAP/UNICEF, 2015; UNICEF & Water Supply ### 6.3 New WASH Infrastructure for Improving Climate Resilience The previous section listed several existing water management and flood technical interventions for improving management interventions in India. climate resilience of WASH systems. What is required is a change in orien- execution and O & M. This can be Many of them, including building tation of the agencies concerned in achieved through awareness raising of large reservoirs for multi-annual the wake of the emerging situation,- and training. However, there are a storage of flows, and implementing so that they understand the need to inter-basin water transfer projects make such interventions as integral opment and management activities comprising planning, design, few interventions, which are based on relatively new concepts from Indian are not new. They are, in fact, part of part of their water resources devel-perspective. They are discussed here. ### 6.3.1 Improved Sanitation Systems for Flood Prone areas and Areas with High Water Table This section explores various technol- high groundwater table areas, includogy options for environmental sanita- ing old concepts like mounds and sand require craftsmanship. tion for areas that are flood prone and envelopes. The 'mounds' are primari-/ or with shallow groundwater table. Iy used for preventing pits to be filled The 'sand envelope' is a simple The Sante-Brac project in Bangladesh- with either groundwater or floods, technology used to create environhad experimented with five different and have been practiced all over the mental condition around seepage pits sanitation solution for flood prone and world. A mound can be erected by the for treating the sewage water while people themselves and it does not it seeps through the envelope, using adsorption and biological filtration<sup>6</sup>. Both solutions (mounds and sand envelopes) are not very expensive and can be built by the HHs themselves as own contribution. The sand envelopes, which are basically slow sand filers, are effective in removing bacteria, protozoa and viruses is below 1.0 nephelometric turbidity units (NTU), a 90 to 99% reduction in bacteria and viruses is achieved (NDWC, 2000). Though itis generally not effective for the majority of chemicals (WHO n. y.), it can be argued that chemical standards for drinking water are of secondary concern in water supply subject to bacterial contamination during floods. Table 13 describes five different technologies suggested for floodprone areas with their technical components and specifications. They are - modified urine diversion toilet; (WHO n.v.). If the effluent turbidity offset seepage pit (double plastic drum system); offset seepage pit (double plastic drum system); single offset pit with biogas system; and step latrine (raised pit with earthen mound). Toilet designs for black cotton soils (suitable for many areas covered by black cotton soil) and coastal areas 6. When the contaminated water flows through a layer of sand, it not only gets physically filtered but also biologically treated, removing sediments and pathogens. This process is based on the ability of organisms to remove pathogens. The top layers of the sand become biologically active by the establishment of a microbial community, also referred to as 'schmutzdecke'. These microbes come from the source of the waste water and establish the community within a matter of months. The fine sand and slow filtration rate facilitate the establishment of this microbial community The majority of the community are predatory bacteria that feed on water-borne microbes passing through the filter. As the process of biological filtration requires a fair amount of time, SSFs usually operate at slow flow rates between 0.1 – 0.3 m3/hour/m2 of surface. The water thus remains in the space above the medium for several hours and larger particles are allowed to separate and settle. It then passes through the sand-bed where it goes through a number of purification processes (WHO, 1996). #### Table 13: Technologies Suggested for Toilets in Flood-Prone Areas #### Description **Technical Components Specifications** 1. Modified Urine Diversion Toilet, forced dehydration: Urine diversion toilet Water level at Peak monsoon → Ventilation bowl, special bowl with 2 is 8' below the ground level. holes: one for the faeces Sludge storage reservoir: and one for the urine. Height: 4'-0" Storage chamber, in the Ventilation Dia:3'-0'' Super storage chamber the Structure Capacity: 800 litres solids are being collect-(Client Choice) ed. Washing water and Urine and Waste Water 2'.9" urine are not stored in storage chamber: this container. Urine & Waste Water Storage Brick Wall Length: 4'-0" Transparent The storage chamber can Highest Flood Width:4'-0" Polythin Level be constructed with 2 Sludge Height: 2'-0" types of materials: bricks Capacity: 900 litre Earthen Mound Ground and polyethylene. Wall and Bottom is Brick Wall. Evaporation Chamber Wall and Bottom is Water including the black / trans-Proof. parent celluloid cover. ■ The system is designed to actively reduce the liquid compo-Estimated Cost: Evaporation tank can be nent of excreta and wash-water by means of heat radiation by constructed with 2 types of the sun and forced aeration. Material cost-10,500, materials: bricks or polyeth-Both the liquid and the solid wastes are separated (by transport and labour cost means of a urine diversion toilet bowl) and stored in separate 9500 = approximately BDT Vent Pipes: the vent chambers. Both are immediately exposed to a flow of air 20,000/-excluding super that's driven through the chambers. The movement of air is structure. generated by the vent pipes with air being drawn into the Earthen mound chamber via the openings in the toilet bowl. As the air moves through the system, it dehydrates the wastes similar to the regular urine diversion toilet systems. #### Description **Specifications Technical Components** #### 2. Offset seepage pit: Double Plastic Drum System - This system is to increase the user-time of the storage chamber without having to empty it and a controlled release of contaminants into the surroundings. This design is only applicable where there is no danger for contamination of groundwater. - The liquids are diverted into a seepage pit through an overflow. By using durable materials for the storage and seepage chambers the system will not collapse during floods and high water occasions. - (This design is only applicable where there is no danger for contamination of groundwater) #### Storage chamber - Seepage Chamber - Earthen mound - Vent Pipe #### Specifications: Water Level at Peak Monsoon is 8' below the Ground Level Sludge Storage Reservoir Height: 4'-0" Dia: 3'-0'' Capacity: 800 litre Solid Plastic Drum Drum is covered with Cover Soak Well: Height: 2'-6" Dia: 1'-4'' Capacity: 100 litre Wall and Bottom of Drum is Perforated. #### **Estimated Cost:** Approximately BDT 3,550. (Material cost is 2400+transport and labour cost is 600) #### 3. Single Plastic Drum System ■ This system is designed to extend filling time of the storage chamber without having to empty it. By using durable materials for the storage and seepage chambers the system will not collapse during floods and high water occasions. - Sand envelope - Vent pipe Storage Chamber ground level. Height: 3'-0" Dia: 2'-8" Capacity: 800 litre Water Level at Peak Monsoon is 8' below the Wall and Bottom of drum is perforated. Drum is covered with Cover #### Total cost: 3200 including (material cost 2150 + labor cost450 + transport cost 150) | Description | Technical Components | Specifications | |----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------| | 3. Single Plastic Drum System (Continued) | | | | Assumption is that the liquid faction of the excreta seeps into the sand envelope and is not stored in the storage chamber. Only the solid faction remains in the storage tank. In case of flooding the level in the storage tank will not become much higher than the flood level, because the waste water will continue to flow into the sand envelope (which is still above flood level). | | | #### 4. Single Offset Pit with Biogas System - In this system conventional cistern-flush and pour-flush toilets can be linked to a biogas digester - The human waste flows into biogas plant by gravity through a separate pipeline from the toilet into the digester unit. - Since the quantity of human faeces generated by a small family is too little, a biogas plant linked only to a toilet will generate very little quantity of gas, thus making a biogas plant solely based on human waste of a family technically unsuitable and economically unviable. Thus, it is necessary to mix human waste with animal waste or cow dung (and preferably kitchen waste). Thus, a biogas digester cannot be considered as a primary faecal treatment unit of a flush toilet, but it can be said that a toilet is an auxiliary supply unit of a biogas plant. - Storage Chamber Reactor is a closed vessel (chamber) and in this form it is the simplest form of digestion. - ferro cement Height: 4'-0" The reactor is equipped with a reinforced concrete (RCC) dome shape cover. - The earthen mound prevents filling of the Ferro-cement reactor during flooding. - Gas outlet, valve and piping or | Water Level at Peak Monsoon is 8' below the Ground level. Sludge Storage Reservoir: Average Dia: 2'-3" Capacity: 450 litre Wall and Bottom of Well is #### **Estimated Cost:** Approximately 7,355 in which 5,555 is material cost and 1200 is transport and labour cost) Description **Technical Components Specifications** #### 5. Step latrine (Raised Pit with earthen mound) - The extended portion of the lining provides additional volume of pit for sludge accumulation. Raising the pit also prevents splashing of the users or blockage of the pit inlet pipe by floating scum. - The lining (RCC or Plastic ring) of pit will be sealed with the clay so as to prevent the contact of sludge with water table. The bottom of the lining will be sealed by plastic sheet or clay seal. The pit will be connected with soak well to allow the liquid part to be connected with soak well. #### Storage chamber Keep the distance between two pits as 1 ft. By this the final distance between two constructed pits will be 3 ft. Sludge Storage Reservoir Wall and Bottom are water 5,933 (4,383 material cost + transport& labour cost 1000) Capacity: 850 litre Twin Pit Latrine System **Estimated Cost:** (Each) Height: 4'-4" Dia: 3'-0" sealed. - This will leave a gap of 1 ft all around the constructed leach pit. - Reduce the size of honeycombing (holes in the wall) to 1 inch & increase the number of holes correspondingly. #### 6. Twin Pit Toilet in Black Cotton Soil This system is designed where the rate of expansion in rainy season and that of contraction in summer season is much higher in black cotton soil as compared to other types. This exerts pressure on any type of construction which causes development of cracks in the same. #### **Technical Components** #### **Specifications** #### 6. Twin Pit Toilet in Black Cotton Soil (Continued...) Black cotton soil also has a tendency to hold water for a longer time. Both these characteristics of Black cotton soil affect the normal functioning of a pit latrine. However these constraints can be overcome by adopting following modifi- - After the entire construction is over, fill the gap around the brick work with coarse sand (remnants after sieving) up to pipe level. This sand envelope protects the pit wall from the pressure of expanding soil. It also facilitates seepage of liquids from the pit. - The sand should be clean and free from silt & clay. - The space above pipe level can be filled with Murom and compacted. #### 7. Twin Pit Toilet for Coastal Regions cations. - The twin pit toilet requires easy seepage of water from the 1. leach pit in the surrounding soil. If this is affected by certain physiological conditions it will certainly hamper the functioning of twin pit toilet. - In coastal region there is a possibility of high water level in the soil and due precautions must be taken in such a situation. It has been observed that in coastal region the water levels in subsurface zone vary greatly from one place to another place. - If need be a test pit of 4 feet depth may be taken to ascertain the water level in the region. - No water observed - Only moisture observed - Water in subsurface region at the time of high tides only. - Water in subsurface region at the time of low as well as high tides. - Water in subsurface region for most part of the year/occasional flooding of water over the ground. - Dense location of houses coupled with high ground water levels. Twin pit toilet Twin pit toilet Twin Pit Toilet modified for high water table areas. - Twin pit toilet modified for high water table areas with due precaution or - Biogas linked toilet with proper arrangement for management of slurry or eco-san toilet - Ecosan toilet - Biogas linked toilet with proper arrangement for management of slurry. - 5. Community biogas plant with proper arrangement for management of slurry. - 6. Small bore sewer system with proper treatment plant ### 6.3.2 Decentralized Wastewater Treatment Systems and their **Economics** In the chronically drought hit, naturally water-scarce regions, every option to increase the effective availability of water through reuse should be tried. This is particularly so as the marginal cost of production and supply of new source of water will be prohibitively ter resources for meeting demands from sectors such as irrigation, which for great transformation, as economic conditions of rural population improve. This would result in greater drive for improving the standard of living. Some of the consequences of this would be an increase in per capita high, owing to high development cost. demand of water for domestic Treatment of domestic wastewater for uses (given the income elasticity irrigation is also one of them (Kumar, of domestic water demand), and 2014). This can reduce the pressure demand for better quality of water on the extremely limited freshwa- supply (vis-à-vis physical, chemical and bacteriological quality of the water and the nature of access) and environdoes not require high quality water. At mental sanitation, as willingness to present, wastewater treatment is a pay for water supplies and wastewafeasible option for urban areas, where ter disposal would be high, at high HHs are connected to a centralized income levels. With larger quantum of sewerage system. Over the next wastewater generated from villages, 10-15 years, rural areas are also poised decentralized, village-level wastewa- ter treatment could become technically feasible. Indiandata on economics of wastewater treatment systems is very scanty. A Water Environment Research Foundation study (Parten, 2008) examined the performance of largescale decentralized and small community wastewater systems from different parts of the United States with flows from 5,000 to 50,000 gallons per day that have operated for at least five years. The results of the study showed that both construction and operational costs per unit volume of treated wastewater vary widely for large scale decentralized wastewater systems, with little correlation found between money spent and system performance or reliability. The actual cost of wastewater treatment system depends on the type of system, the physical environment and the land prices (for most systems). The cost of two WWT systems that use the same biological processes with the same treatment capacity in two different locations can vary widely depending on the type of climate, especially temperature and aridity (Kumar, 2014). A system with an optimal design that takes into account actual flow rate, quality of the wastewater, and design variables (some of them are flow rates, quality of raw wastewater, climatic parameters, soil characteristics, depth to water table, etc., depending on the type of system) would cost much less than a poorly designed or over-designed system. Parten (2008) found that the capital costs vary from US \$ 18 to 492 per gallon of treated wastewater per day. We consider an average cost of US \$ of daily wastewater inflow (assuming a ppp adjusted conversion ratio of US \$ 1= 12 Rs). As per Parten (2008), the operating cost (electricity cost) is US\$ 0.01 to 0.81 per gallon of daily flow of wastewater. The electricity usage per gallon of treated wastewater tended to be more for activated sludge plants than for systems using some type of packed media/filtration process as the principal method of secondary or advanced treatment. The sludge removal cost was in the range of US \$ 0.0034 and 0.92 per gallon of daily wastewater flow. For a village with a population of 1000 persons, the total daily wastewater outflow, if all the HHs are connected to a sewerage system would be around 1.2 lac litres or 26,315 gallons of wastewater. The total cost would be Rs. 3.18 crore. If we allow the wastewater from the kitchen. bathroom etc., to be diverted for irrigating the kitchen garden and not connected to the sewerage system. 100 per gallon or Rs 1200 per gallon the cost of the wastewater treatment system can be significantly brought down. If we assume that out of the 150 litres of daily water use, nearly 20% goes for flushing the toilets, then the wastewater generation would be only 30 litres instead of the 120 litres we have earlier assumed. The cost of the system can then be brought down to 0.79 crore Rupees (Rs. 7.9 million). Another option is to treat the entire wastewater and sell it to irrigators in the village. The price of the treated wastewater, which can be used by farmers to grow high value fruits and vegetables, can be kept at Rs. 10/ m3 of water. The revenue that can be generated per year would be Rs. 4.38 lac Rupees. To begin with we need to identify the cost of toilets can be in the range of Rs. 15,000 to Rs. 20,000 per unit. Hence the total cost for the entire village would be Rs 15 million to Rs. 20 million. ### Public-Private Partnerships (PPP) There is a need to identify areas and system is linked through ecosystem strategies for investments by public and private partnerships (PPPs) based on an enhanced understanding of how the resilience of WASH systems to water-related hazards (e.g. floods and water scarcity) can be improved. Some of the specific areas for investments by such partnership include 1) building and running large desalination systems;2) detection and prevention of leakages in water distribution lines. especially long distance pipelines used for regional water supply schemes; and, 3) design, building and operation of decentralized wastewater treatment systems. Investments must not only focus on access and provision of WASH services through infrastructure development, but should also be much more strongly coordinated with activities of stakeholders across the entire river basin to which WASH services, such as hydrological flows, purification and waste treatment. flood and drought control, etc. (Johannessenet al., 2014). The provision of safe and resilient WASH services is intrinsically linked to processes of water management, land use planning, and disaster risk reduction across the entire river basin and even beyond, including to the urban area in which they are located. Health-related costs are often given little weightage in decisions about specific interventions to protect against hazards such as floods. PPPs are increasingly seen as a way to motivate private sector investment in urban WASH infrastructure projects that lack public funding. PPPs have the potential to expand the range of service providers beyond traditional public sector monopolies and inject a measure of efficiency, dynamism, innovation, quality improvement, increase of access, cost-recovery and consumer responsiveness. Currently, the proportion of private investment in the water and sanitation sectors in developing countries is low, representing only 35% of the market compared to 80% in the developed world. PPPs have also recently emerged as important and necessary mechanisms to strengthen DRR efforts in general. This has been motivated by an improved understanding of the vulnerabilities of supply chains and infrastructure assets to hazards among the private sector enterprises. The enormous potential for private sector engagement in building resilience through corporate social responsibility (CSR) and philanthropy has recently been demonstrated by the United Nations Office for Disaster Risk Reduction's have an incentive to provide facilities Private Sector Partnerships. Corporate India has responded enthusiastically to the Government's call-to-action on WASH issues. Ninety per cent of the companies reported at least one CSR intervention in WASH 164 programmes being carried out. Of these, 38% were public sector undertakings (Table 14). Industries with strategic interest in WASH lead the way (Table 15). Heavy Engineering. Manufacturing and Fast Moving Consumer Goods (FMCG) companies were more likely to support WASH programs than other industries. This higher level of interest can be explained by the strategic importance of WASH to both these industries, FMCG companies have and sanitizers that are closely aligned to WASH agenda and were most at influencing attitudeand behaviour (Parekh et al., 2015). Heavy engineer-phies ing and manufacturing companies for communities residing around their factories as well as the resources to construct these facilities. Most of the CSR programmes in WASH are broadly aligned to the needs of States, although North-East during 2008-2011 with a total of India has been ignored. Data indicate that the most popular States for CSR in WASH were Gujarat, Karnataka, Maharashtra, Rajasthan, Tamil Nadu and Uttar Pradesh. These States also reported high rates of open defecation. However, States such as Arunachal Pradesh, Assam, and Jammu and Kashmir were neglected, despite high incidence of reportedopen defecation. The North-East, in general, saw low levels of corporate interest. Further, most of the CSR programs in WASH focus on rural areas. Of the 86 compaproducts such as soaps, disinfectants nies, 52% focused exclusively on rural areas, compared to only 17%, which focused on urban areas. The WASH likely to conduct programmes aimed related CSR of the remaining 31% were spread across mixed geogra- Zinc. CSR in WASH is focused on the creation of infrastructure, but focus very little on behavioural change aspects. Also, the operation and maintenance (O&M) of toilets is neglected and programmes on influencing behaviour appear tokenistic. Only a few companies, which include Tata Consultancy Services, National Thermal Power Corporation. Coal India, National Mineral Development Corporation, Hindustan Zinc, Rural Electrification Corporation, GAIL India. Punjab National Bank, Cipla, Bosch Petronet LNG, Bajaj Finance and Titan Industries, were reported to be implementing O&M programmes. Ambuja Cement Foundation, Gas Authority of India Limited, Hindustan Zinc and Bharat Heavy Electricals Limited were some of the companies that reported interventions in waste management. Companies that reported behavioural change programmes include, ITC, Hindustan Unilever, Titan Industries, Jindal Steel and Power, and Hindustan Table 14: Number of Companies Active in WASH Sector with their Budget Range | CSR budget range | No. of companies | | | | |----------------------------------------------|---------------------------|--|--|--| | Less than 1 crore Rupees | 8 | | | | | 1-5 crore | 11 | | | | | 5-15 crore | 6 | | | | | More than 15 crore | 8 | | | | | Total | 33 | | | | | Top 5 companies with largest budgets in WASH | | | | | | Top 5 PSUs | Top 5 Non-PSUs | | | | | Coal India | Tata Consultancy Services | | | | | Power Finance Corporation | BhartiAirtel | | | | | ONGC | BhartiInfratel | | | | | GAIL India | Tata Steel | | | | | State Bank of India | Mahindra & Mahindra | | | | Table 15: Characteristics of Companies with Interest in WASH Sector | Strategic interest | Impact-oriented companies | Catalytic competencies | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | There are two types of companies with strategic interest: A)Companies that have relevant products or services (FMCG, Pharmaceutical, Healthcare) – such as soaps, detergents, medicines and have a marketing or business goal in addition to on-ground impact. Such companies may be open to partnering with other players to create collaborative WASH programmes. B)Companies (Mining, Manufacturing, Oil & Gas) that invest in comprehensive programmes which benefit communities around their areas of operation. | These include companies that may not have a direct stakeholder interest or a location interest such as Banking Financial Services and Insurance (BFSI) companies or those in the service industry. Such companies may have an interest in replicating or scaling existing programs that have reported high levels of impact. They may also wish to invest in innovative WASH models or follow the Government guidelines. These companies may need support to focus on long-term maintenance and behaviour change. | These include companies that seek to leverage their core competencies to execute strategies for change and include Media companies with specialized programming, IT companies developing products or monitoring tools etc. | Source: Parekhet al. (2015) #### 6.5. Social learning mallyat many levels and across differ- a great potential in underpinning the enet al., 2014). ent sectors. As such, insights and strategic innovation needed to radical- Social learning is widely argued to knowledge can transfer beyond the ly improve the modus operandi of have the potential to share knowledge individual to organizations or commu-private sector involvement for more and lessons, both formally and infor- nities of practice. Social learning has resilient WASH systems (Johanness- #### Micro-insurance Micro insurance schemes are mechanisms that can help vulnerable populations in developing countries to deal with financial risks from disaster. ly important in places where people They are increasingly seen as a way are not bankable. In many developing forward in spreading and transfer- countries, less than half the population for infrastructure development in ring risk. Micro insurance could help has access to formal financial services slums, and micro insurance in housing many of the poorest people. 2.4 billion and in most of Africa less than one in could help to manage this risk better. people lived on less than US2 \$ per five HHs has access. Micro insurance For example, people living in slum will day in 2010, to escape poverty and for health, in some African cases, fill gaps in risk management. Micro seems to have a much greater chance ties, which often are of poorest quality insurance schemes normally involve of becoming a growing market than and very unhygienic. a number of partners from the private sector, Governments, NGOs, and others. These schemes are particular- insurance for WASH systems per se. However, indirectly, micro-insurance can play a key role for WASH systems (Johannessen et al., 2014). Risk of eviction is one of the biggest barriers have an incentive to improve the facili- ### Investment strategy Building resilient WASH systems socio-economic system to which the right down to the point of access for to water-related hazards and result- system is linked. This system includes individual user. Building resilience ing health risks requires a broader river basin and wider urban area in to hazards consequently requires set of investments across the entire which WASH system is located, better coordination and collaboration between stakeholders engaged in a broad range of different sectors that influence the way in which land and water resources are used for different areas, such as agriculture, energy provision, natural resource extraction, conservation, housing and infrastructure development, industrial develop- B. ment, and disaster risk management (Johannessen et al., 2014). A number of business strategies could help reduce vulnerability of people and businesses to water-related hazards in urban areas, and that would have direct and indirect impacts on enhancing the resilience of urban WASH systems, emphasizing the important social learningrole. These strategies include the following: A. Re-examining profitability of existing WASH investments in the light of expected losses and - damages caused by water-related hazards. Cost-benefit analysis and strategic environmental assessment tools can help raise awareness to the benefits of investing in ecosystems. - Replicating and up scaling approaches that acknowledge the water needs to have adequate space. This entails more integrated social and technical programmes that incorporate flood preparedness and non-structural mitigation, and a multifunctional land use approach. - Creating an institutional culture for private sector investment based on accountability, facilitated by quality assurance approaches and methods. Strive towards a greener and resilient city environment, and promoting concerns - about the continuity and longterm reliability of investments. - Developing a better understanding of customer base, including world views, needs and preferences, motivations, and purchasing power. Exploring how the 'Bottom of the pyramid' investments can become profitable through strategic innovation, especially in poor urban communities. - Supporting a new segment of private entrepreneurs through legislation, as well as empowerment of and dialog with (informal) small private actors. This calls for creating an enabling policy, and a support in practice in building trust, capacity and dialogue. Source: Johannessen et al. (2014) ## **Findings and Conclusions** This study developed a composite index for assessing climate induced risk in WASH, which take into account a wide range of physical, technical, socio-economic and institutional factors that determine the three dimensions of risk, viz., exposure, hazard, and vulnerability. This is the first of its kind in India's effort towards evolving strategies for designing WASH systems that are climate-resilient. The study mapped climate-induced risk in WASH for the two divisions of Maharashtra, viz., Marathwada and Vidarbha, comprising 19 districtsusing this composite index. Overall, the computed value of the risk index was higher for Marathwada region (0.30) when compared to Vidarbha region (0.28). As regards the districts, the climate risk index variesfrom 0.22 in Chandrapur district (Vidarbha) to 0.35 in Parbhani (Marathwada). This mappinghelped identify the key interventions that need to be made in areas identified as having 'high climate-risk', in order to reduce the three different dimensions of climate risks and to improve the climate-resilience of WASH systems there. Disaster risk reduction plans and The decision to change the water measures exist in Maharashtra. Thev are both structural and non-structural. However, they are not specific to risks associated with poor water supply and sanitation related risks, resulting from climate extremes -floods, droughts and cyclones. Research and past experience suggest that these measures to reduce the exposure to droughts comprising structural measures such as construction of dams, and small water harvesting structures, and non-structural measures such as drought forecasting systems and drought warning alone are unlikely to have any significant impact on reducing the risks in WASH. On the contrary, they can increase the exposure of WASH systems to droughts, as the recent experi- ence with farm ponds in the State suggests. Similarly, the measures being proposed for reducing community vulnerability to droughts under 'capacity building and awareness', such as mere awareness creation about drought-resistant crops and use of micro irrigation systems are also not going to be effective in reducing WASH related risks. Nevertheless, recent experience from other parts of India with disaster management responses suggests that the measures being proposed for reducing exposure to flood hazards and community vulnerability to the same will be effective in the State of Maharashtra. Particularly, the non-structural measures for reducing exposure to floods such as strengthening the flood forecasting systems and creating additional infrastructure for flood warnings are very useful. On the vulnerability front, imparting training to the stakeholders involved in flood mitigation and management, organizing mock drills on flood rescue operations, and the like, will be effec- supply norm for rural areas to 140 lpcd which is at par with urban areas is a major reform initiative. While the average per capita cost norm of Rs. 137 per m3 of water supply for the whole of Maharashtra as suggested by the 'High Level Committee on Balanced Regional Development Issues in Maharashtra' is also an encouraging one for future investments in WASH sector, research suggests that the unit cost (Rs/m3 of water) for drought-prone regions such as Marathwada and Vidarbha will have to be much higher than that for water-rich areas such as Konkan and Western Ghat region for ensuring sustainable water supply, in lieu of the fact that water endowment is limited locally and water will have to be imported from exogenous sources. Capacity building of communities for reducing their vulnerability to climate-induced WASH hazards poses a significant challenge to Government agencies. In many cases the different components of WASH and the manifestations of its mis-management within the population is not recognized in its entirety. There is low appreciation of the environmental and health impacts of poor environmental sanitation and unacceptable hygiene practices among communities with low levels of literacy and high incidence of poverty. It requires a more eclectic approach where all stakeholders need to be apprised of different aspects of risk and how they affect them. Further, no 'one-fit-forall' solution exists and in most cases interventions for reducing the vulnerability need to be customized for the existing physical, socio-economic and institutional environment. The current over-emphasis on smallscale rainwater harvesting and watershed development as drought proofing measure is a matter of concern. They will be quite ineffective in chronically drought-prone region of Marathwada, given the conditions that exist there vis-à-vis the rainfall, its yearly variations, aridity, and the high degree of water resources exploitation. As being observed in drought prone areas of Maharashtra, structuressuch asfarm ponds can actually increase the exposure of WASH systems to droughts in rural areas. This is because farm ponds can reduce the amount of water in natural system that can be tapped by surface and groundwater based water supply schemes, given the manner in which they are used. At the Government level, capacity building of the agencies concerned (viz., Water Resources Department and the Water Supply and Sanitation Department) for designing and executing projects that reduce the climate-induced hazards and exposure is important. The first and the foremost step is to build the skills of technical officers of MJP to design reliable and dependable rural water supply systems in areas experiencing climatic extremes. The areas for skill building are the following: - A. Hydrological modelling of river basins for climate change scenar- - B. Designing of surface reservoirs in flood prone areas for greater flood cushioning; - C. Designing of reservoirs to increase the multi annual storage of inflows from catchments in drought prone areas; - D. Import of water from water-rich regions to chronically drought-hit region of Marathwada; - E. Leakage detection and prevention in water distribution pipes of regional water supply systems; - F. Design and operation of decent he buffer stock of water through tralized desalination systems; - G. Design of ecologically sound sanitation infrastructure; and, - tion of wastewater treatment systems. These measures should be complimented by strengthening financial capabilities to execute the related infrastructure projects. The type of infrastructure projects required to improve climate resilience in WASH include, nual storage capacity, in regions experiencing high inter-annual variability in rainfall and streamflows: - Building infrastructure for transfer a mere 21 lpcd for Nagpur. The rich of water from water-rich regions of the State to chronically droughtprone areas; - III. Building decentralized desalination systems in coastal areas affected by severe salinity and not served by piped water supply schemes; - IV. Building decentralized wastewater treatment systems for enabling reuse of water from domestic sector: - Rainwater harvesting in high rainfall hilly areas: - VI. Rehabilitation of dilapidated water distribution pipes in large water supply schemes; and, - VII. Raised hand-pumps, well-head protection walls, and raised latrines placed at a safe distance from water sources in flood prone areas. Among these measures, improving import from water-surplus regions is extremely crucialfor increasing the water supply access of the poor in quantitative terms. Merely having the supply infrastructure (water connec-H. Design, execution, and operations) will not help. This is evident from the study by UNICEF/IRAP (2013) on rural water supply in Maharashtra. The study has shown significant inter-regional difference in access to water supply from public systems in terms of type of access and level of supply. The proportion of rural HHs having access to PWS varied from a lowest of 44% in Nagpur and Konkan to a highest of 72% in Amravati. The percentage of HHshaving individual I. Large reservoirs having multi-an- tap connections was also as low as 21% in three divisions, viz., Marathwada. Konkan and Nagpur. Yet. the per capita water supply was highest for Konkan division, with 129 lpcd, against water resource endowment with a good number of surface reservoirs. adequate capacity of water supply infrastructure, and high affordability of the rural communities to pay for the services might have helped improve water supply situation in Konkan region (UNICEF/IRAP, 2013). Assured water supply encourages families to go for household water connections. Access to household tap connections will in turn motivate rural families to adopt and use modern toilets, as the same study showed. Finally, the strengthening of various institutions engaged in WASH systems throughcapacity building and integration with other sectors is of prime importance. Particularly, the integration of WASH sector with water resources development and management sector is extremely crucialgiven the criticality of the latter for sustaining WASH interventions. The ability of water utility to manage domestic water supply in terms of quantity and quality on sustainable basis will be largely determined by how well the water resources are managed, and how equitably their allocation across sectors is done with the support of infrastructure and institutions (MacKay, 2003). It is equally important to recognize the significance of community based knowledge, create opportunities for innovations from within communities and organisations, and integrating them with local needs and practices. Autonomy to enter into partnership with (and or collaborate in the CSR activities of) the private sector companies for planning, design, execution and operation and maintenance of WASH related projects through appropriate institutional models would be key to institutional capacity building of the agencies in the WASH sector. #### References - ☐ Ahsan, Md. N. and Warner, J. (2014). The socio-economic vulnerability index: A pragmatic approach for assessing climate change led risks-A case study in the south-western coastal Bangladesh. International Journal of Disaster Risk Reduction, Elsevier 8, 32-49. - ☐ Asian Development Bank (2013). Mainstreaming Climate Change Risk Management in Development, Proceedings of the Vulnerability Assessment and Adaptation Planning Conference and Working Sessions, Prepared for the Ministry of Science, Technology and Environment (MoSTE), Kathmandu, Nepal. - ☐ Barron, Jennie (2009). (Ed) Rainwater Harvesting: ALifeline for Human Wellbeing, A report prepared for UNEP by Stockholm Environment Institute, United Nations Environment Programme. - ☐ Brouwer, R., Akter, S., Brander, L., &Hague, E. (2007). Socioeconomic vulnerability and adaptation to environmental risk: a case study of climate change and flooding in Bangladesh. Risk Analysis, 27(2), 313-326. - ☐ Calow, R. C., MacDonald, A. M., Nicol, A. L., & Robins, N. S. (2010). Ground water security and drought in Africa: linking availability, access, and demand. Ground Water, 48(2), 246-256. - ☐ Central Public Health and Environmental Engineering Organization and Japan International Cooperation Agency (2012). Manual on sewerage and sewage treatment, part B: Operation and maintenance. New Delhi: Central Public Health and Environmental Engineering Organization, Ministry of Urban Development and Japan International Cooperation Agency. - Cohen A and Sullivan C. A. (2010). Water and poverty in rural China: Developing an instrument to assess the multiple dimensions of water and poverty. Ecological Economics, Elsevier, 69, 999-1009. - ☐ Carlos. E. R. Zimmerman, and Restrepo, Hannah B. Kates (2014). Flooding Impacts on drinking Water Systems; New York University, Wagner Graduate School of Public Service (NYU-Wagner) - Deshpande, S., Bassi, N., Kumar, M. D., &Kabir, Y.(2016). Reducing vulnerability to climate variability: Forecasting droughts in Vidarbha region of Maharashtra, western India. In Rural water systems for multiple uses and livelihood security (pp. 49-68). Elsevier, Netherlands. - Dickenson, J. M., and Bachman, S. B. (1994). The Optimization of Spreading Ground Operations, in Proceedings of Second International Seminar on Artificial Recharge of Groundwater, A. Ivan Johnson and R. David G. Pyne (Eds), ASCE Publications, 630-639. - □ Dumenu W. K. and Obeng E. A. (2016). Climate change and rural communities in Ghana: Social vulnerability, impacts, adaptations and policy implications, Environmental Science & Policy, 55, 208-217. - □ Falkenmark, M., Lundqvist, J., &Widstrand, C. (1989). Macro-scale water scarcity requires micro-scale approaches. Natural Resources Forum, 13(4), 258-267. - ☐ Farley, M. (2001). Leakage management and control: A best practice training manual. Geneva, Switzerland: World Health Organization. - ☐ Fass, S. M. (1993). Water and poverty: implications for water planning. Water Resource Research, 29(7). 1975-1981. - ☐ Gallina V, Torresan S, Critto A, Sperotto A, Glade T and Macromini A. (2016). A review of multi-risk methodologies for natural hazards: Consequences and challenges for a climate change impact assessment. Journal of Environmental Management. Elsevier, 168, 123-132. - Githeko, A. K., Lindsay, S. W., Confalonieri, U. E., & Patz, J. A. (2000). Climate change and vector-borne diseases: a regional analysis. Bulletin of the World Health Organization, 78(9), 1136-1147. - ☐ Global WASH Cluster (2011). Disaster Risk Reduction and Water. Sanitation and Hygiene Comprehensive Guidance. Global WASH Cluster, UNICEF New York. - ☐ Global Water Partnership(2014). Submission by the Global Water Partnership on Good Practices in and Lessons Learned from National Adaptation Planning with Specific Focus on Water Resources (Draft 1). Global Water Partnership, Stockholm, Sweden. - ☐ Government of India (2011). Standard Operating Procedure for Responding to Natural Disasters. Disaster Management Division, Ministry of Drinking Water and Sanitation. Government of India. New Delhi. - Government of Maharashtra (1993). The Maharashtra Groundwater (Regulation for Drinking Water Purposes) Act, 1993. Maharashtra: Government of Maharashtra. - ☐ Government of Maharashtra (2003). The Maharashtra State Water Policy 2003. Maharashtra: Government of Maharashtra. - ☐ Government of Maharashtra (n.d). State Disaster Management Plan (Draft Copy). Disaster Management Unit Relief and Rehabilitation Department. Government of Maharashtra, Mumbai. - ☐ Government of Maharashtra (2013). Report of the High Level Committee on Balanced Regional Development Issues in Maharashtra. Planning Department, Government of Maharashtra, Mumbai, - ☐ Government of Maharashtra (2016). Economic Survey of Maharashtra 2015-16, Directorate of Economics and Statistics, Planning Department, Govt. of Maharashtra, Mumbai. - ☐ Japan International Cooperation Agency (2003). Manual on flood control planning. Tokyo, Japan: Japan International Cooperation Agency. - □ Johannessen, Å, Rosemarin, A., Thomalla, F., Swartling, Å.G., Stenström, T.A. and Vulturius, G. (2014). Strategies for Building Resilience to Hazards in Water, Sanitation and Hygiene (WASH) Systems: The Role of Public Private Partnerships. International Journal of Disaster Risk Reduction, 10, pp. 102-115. - ☐ Heltberg R and Osmolovskiy M. B. (December, 2010). Mapping Vulnerability to Climate Change. The World Bank, 1-19. - ☐ Hunter, P. R., MacDonald, A. M., & Carter, R. C. (2010). Water supply and health. PLoS Med, 7(11), e1000361. - ☐ IPCC (2007). Climate change 2007, climate change impacts, adaptation and vulnerability. Working Group II contribution to the Intergovernmental Panel on Climate Change Fourth Assessment Report. Summary for policymakers, 23 - ☐ IRAP, GSDA and UNICEF. (2013). Multiple-Use water services to reduce poverty and vulnerability to climate variability and change-A collaborative action research project in Maharashtra, India. Final Report Submitted to UNICEF Field office, Mumbai. - ☐ James, A.J., Kumar, M.D., Batchelor, J., Batchelor, C., Bassi, N., Choudhary, N., Gandhi, D., Syme, G., Milne, G., & Kumar, P. (2015). Catchment assessment and management planning for watershed management. World Bank, Washington DC. - ☐ Kabir, Y., V. Niranjan, V., Bassi, N., & Kumar, M. D. (2016a). Multiple water needs of rural households: Studies from three agro-ecologies in Maharashtra. In Rural water systems for multiple uses and livelihood security (pp. 49-68). Elsevier, Netherlands. - ☐ Kabir, Y., Bassi, N., Kumar, M. D., & Niranjan, V. (2016b). Multiple-Use water systems for reducing household vulnerability to water supply problems. In Rural water systems for multiple uses and livelihood security (pp. 69-78). Elsevier, Netherlands. - Kale, Eshwer (2017). Problematic Uses and Practices of Farm Ponds in Maharashtra. Economic and Political Weekly, LII (3): 20-22. - ☐ Kissi, A. E., Abbey, G. A., Agboka, K., & Egbendewe, A. (2015). Quantitative Assessment of Vulnerability to Flood Hazards in Downstream Area of Mono Basin, South-Eastern Togo: Yoto District. Journal of Geographic Information System, 7(06), 607. - ☐ Kumar, M. D. (2010). Managing water in river basins: hydrology, economics and institutions. OUP, New - □ Kumar, M. D. (2014). Thirsty Cities: How Indian Cities Can Meet their Water Needs, Oxford University Press, New Delhi. - □ Kumar, M. D., Ghosh, S., Patel, A., Singh, O. P., & Ravindranath, R. (2006). Rainwater harvesting in India: some critical issues for basin planning and research. Land Use and Water Resources Research, 6(1), 1-17. - □ Kumar, M. D., Patel, A., Ravindranath, R., & Singh, O. P. (2008). Chasing a mirage: water harvesting and artificial recharge in naturally water-scarce regions. Economic and Political weekly, 43(35), 61-71. - ☐ Kumar, M. D. and van Dam, J. C. (2013). Drivers of Change in Agricultural Water Productivity and its Improvement at Basin Scale in Developing Economies, Water International, 38 (3): 312-325. - □ Kumar, M. D., Saleth, R. M., Foster, J. D., Niranjan, V., & Sivamohan, M. V. K. (2016). Water, human development, inclusive growth, and poverty alleviation: International perspectives. In Rural water systems for multiple uses and livelihood security (pp. 17-47). Elsevier, Netherlands. - MacKay, Heather (2003). Water Policies and Practices. in Reed, D. and De Wit. M. (Eds) Towards a Just South Africa: The Political Economy of Natural Resource Wealth, PP 49-83. Washington. WWF and the CSIR, Pretoria. - ☐ Maliva, R., & Missimer, T. (2012). Aridity and drought. In Arid lands water evaluation and management (pp. 21-39). Springer, Berlin, Heidelberg. - ☐ Mamani, Groover, Rontetap, M., Maessen, S. (2014). Sanitation Solutions for Flood Prone and High Water Table Areas, Final report of Sante Brac Project, December 2014. - Disaster Risk Reduction and Climate Change Adaptation. International Review of Public Administration. 18(3), pp.257-260. - ☐ McFatridge, S. and Murphy, D. (2012). Best Practices for Mainstreaming Climate Change in National Planning Processes: Annotated Bibliography. International Institute for Sustainable Development, Canada. - ☐ McCartney, M., & Smakhtin, V. (2010). Water storage in an era of climate change: addressing the challenge of increasing rainfall variability. Blue paper(No. 212430). International Water Management Institute. - NDWC (Editor) (2000). Slow Sand Filtration. Technical Brief (A National Drinking Water Clearing Fact Sheet), Morgantown: National Drinking Water Clearing House. - ☐ Montgomery, M. A., & Elimelech, M. (2007). Water and sanitation in developing countries: including health in the equation. Environmental Science & Technology, 41(1), 17-24. - □ National Disaster Management Authority (2010). National disaster management guidelines: Management of drought. New Delhi, India: National Disaster Management Authority, Government of India. - □ Natural Resources Defense Council (NRDC) (2014). Connecting Water, Sanitation, and Hygiene with Fresh Water Conservation and Climate Resilience: The Need to Facilitate Integration in Development Assistance. Natural Resources Defence Council, New York. - ☐ Opiyo EO F, Wasonga O V and Nyangito M M. (2014). Measuring household vulnerability to climate-induced stresses in pastoral rangelands of Kenya: Implications for resilience programme. Pastoralism: Research, Policy and Practice, 4(10), 1-15. - ☐ Parten, Susan M. (2008). Analysis of Community Sized Existing Decentralized Wastewater Treatment Systems, Research Digest, Community Environmental Services Inc., USA. - Parvin G A, Shaw R. (2011). Climate disaster resilience of Dhaka city corporation: An empirical assessment at zone level. Risk, Hazards & Crisis in Public Policy, 2(2), 1-30. - ☐ Parekh, A., Prakash, P., Mukherjee, R., and Bhattacharya, D. (2015). CSR in Water, Sanitation and Hygiene (WASH), What are India's Top Companies up to? Samhita and India Sanitation Coalition, Mumbai. - □ Patz, J. A., & Kovats, R. S. (2002). Hotspots in climate change and human health. British Medical Journal, 325(7372), 1094. - ☐ Manzoor, A., (2013). Toward Resilience: A Guide to ☐ Perfrement T & Lloyd T. (n.d). Identifying and visualizing resilience to flooding via a composite Flooding Disaster Resilience Index. University of New South Wales, Sydney. - ☐ Phansalkar, S. and Kher, V. (2006). A decade of the Maharashtra groundwater legislation: Analysis of the implementation process. Law, Environment and Development Journal 2(1): 69-83. - ☐ Pisharoty, P. R. (1990). Characteristics of Indian Rainfall. Monograph, Ahmedabad: Physical Research - □ Pollner, J., Kryspin-Watson, J., &Nieuwejaar, S. (2010). Disaster risk management and climate change adaptation in Europe and central Asia. Washington DC: World Bank. - □ Rance, J and Walmsley, N. (HR Wallingford) (2014). WASH Climate Resilient Development Strategic Framework. Global Water Partnership (GWP) and UNICEF. New York and Stockholm. - ☐ Rijsberman, F. R. (2006). Water scarcity: fact or fiction?. Agricultural water management, 80(1), 5-22. - □ Satta A, Snoussi M, Puddu M, Flayou L and Hout R. (2016). An indexed based method to assess the risks of climate related hazards in coastal zones: The case of Tetouan. Estuarine, Coastal and Shelf Sciences, Elsevier. 175, 93-105. - ☐ Sharma, B. R. (2012). Unlocking Value out of India's Rainfed Farming Areas, Water Policy Research Highlight-10. Anand, Gujarat, India: IWMI-Tata Water Policy Program. - ☐ Sisto N P, Ramirez A I, Aguilar-Barajas I., & Magana-Rueda V. (2016). Climate threats, water supply vulnerability, and the risk of a water crisis in the Monterrey Metropolitan Area (Northeastern Mexico). Physics and Chemistry on the Earth, Elsevier, 91, 2-9. - ☐ Stephens, C., Akerman, M., Avle, S., Maia, P. B., Campanario, P., Doe, B., &Tetteh, D. (1997). Urban equity and urban health: using existing data to understand inequalities in health and environment in Accra, Ghana and Sao Paulo, Brazil, Environment and Urbanization, 9(1), 181-202. - ☐ Sullivan, C. (2002).Calculating water poverty index. World Development, 30(7), 1195-1211 - □ Turnbull, M., Sterrett L. Charlotte and Hilleboe, A. (2013). Toward Resilience: A Guide to Disaster Risk Reduction and Climate Change Adaptation, Practical Action Publishing Ltd, The Schumacher Centre, Warwickshire ,UK (pp 73-74) - ☐ UNICEF/Institute for Resource Analysis and Policy ☐ (IRAP)in Collaboration with Water Supply and Sanitation Department, Government of Maharashtra (2013). Promoting Sustainable Water Supply and Sanitation in Rural Maharashtra: Institutional and Policy Regimes, Final Report, institute for Resource Analysis and Policy, Hyderabad, February. - □ UNICEF and Water Supply and Sanitation Department (2014). T for Toilets: A Technical Guidebook for Household Toilets for Different Conditions in Rural Maharashtra. UNICEF & Government of Maharashtra, Mumbai. September 2014. - □ UNICEF (2016). Sanitation Contexts and Considerations for Risk Informed Programming and Climate Resilient Development, February 8-9, 2016. - □ UNICEF and GWP (2014). WASH Climate Resilient Development: A Strategic Framework, UNICEF and Global Water Partnership, ISBN: 978-91-87823-08-4. - □ UNIEF (2016).When Coping Crumbles: A Rapid Assessment of the Impact of Drought on Children and Women in India, Drought in India 2015-16, United Nations Children's Fund, New Delhi. - □ Vedeld, T., Aandahl, g., Barkved, L., Kelkar, U., de Bruin, K., Lanjekar, P. (2014). Drought in Jalna: Community based Adaptation to Extreme Climate Events in Maharashtra, The Energy and Resources Institute (TERI) and Norwegian Institute for Urban and Regional Research (NIBR), New Delhi: The Energy and Resources Institute. - □ WaterAid (2011). Technical handbook: Construction of ecological sanitation latrine. Nepal. Kathmandu: WaterAid. - WaterAid & NIRAPAD (December, 2012). Handbook: Climate change, and disaster resilient water, sanitation and hygiene practices. Bangladesh, 1-64. - ☐ Water Treatment Methods, www.cyber-nook.com accessed on 3rd January 2017. - □ Woodward, A., Hales, S., Litidamu, N., Phillips, D., & Martin, J. (2000). Protecting human health in a changing world: the role of social and economic development. Bulletin of the World Health Organization, 78(9), 1148-1155. - □ World Bank. (2012). Draft Report on Maharashtra sector status report: Water supply. Water and Sanitation Program, Government of Maharashtra: The World - World Health Organization (WHO). (2002). Managing water in the home: accelerated health gains from improved water supply. WHO, Geneva. - World Health Organization (WHO) & United Nations Children's Fund (UNICEF).(2000). Global water supply and sanitation assessment 2000 report. World Health Organization/United Nations Children's Fund. Geneva/ New York. - WHO (Editor) (n.y.) Chapter 12: Water Treatment. In: WHO (Ed) (2009): WHO Seminar Pack for Drinking Water Quality. - WHO (Editor) (1996): Guidelines for Drinking-Water Quality, Second Edition (Health Criteria and Other Supporting Information - Second Edition, 2). Geneva: World Health Organization (WHO). - Zimmerman, J. B., Mihelcic, J. R., & Smith, A. J. (2008). Global stressors on water quality and quantity. Environmental science & technology, 42(12), 4247-4254. ## Annexure 1: Maps Representing Analysis for different components of Risk in WASH Map 1: Exposure of WASH Systems to Hazard Map 2: Climate Hazard in WASH Systems Map 3: Vulnerability of Communities to Hazard Map 4: Climate Risk in WASH ## Annexure 2: Analysis of Climate Parameters of Marathwada and Vidarbha Region, Maharashtra The rainfall characteristics of the Figure 2. It seems that the rainfall in Vidarbha region the regions is uneven and there is a considerable region-wise as also yearly variations. It is observed that 88% of the total annual average rainfall occurs during the monsoon months in both the regions. The high annual average rainfall in districts Bhandara, Chandrapur, Gadchiroli, Gondia, Nagpur and Wardha of Vidarbha region indicates lowest hazard (Figure 8); while in the Marathwada districts annual average rainfall varies between 700 to 900 mm (Figure 9) indicating moderate hazard. In all the districts in both the regions the variability of rainfall is similar in characteristics, having a high inter-annual variability ranging between 18 to 30%. The mean annual temperature and relative humidity in all these districts vary FROM 23 to 300C, and $30\pm5\%$ to $50\pm7\%$ , pointing towards a community under moderate exposure situated in the semi-arid region, therefore, moderate score has been given to all these districts. regions are presented in Figure 1 & Figure 8: Mean and Coefficient of variation of rainfall in the districts of to climate risk. All the districts are Figure 9: Mean and Coefficient of variation of rainfall in the districts of Marathwada region ### Surface and Groundwater resources of Marathwada and Vidarbha Regions, Maharashtra Characteristics of the natural water resources vary between perennial and seasonal water sources in both the regions. Godavari, Krishna, Tapi, Narmada and West flowing river basins are the major ones of Maharashtra. The average annual water availability in the said river basins within Maharashtra territo- tions (water availability in the range of ry is anticipated to be 163.82 BCM. About 89% of the geographical area of Maharashtra falls under the three da have water deficit condition (water the districts of Marathwada region major river basins of Godavari, Krishna availability in the range of 1,500-3,000 and Tapi. While Krishna river basin is considered to be a water scarce basin, Godavari and Tapi are water rich (Government of Maharashtra, 2011). Thirteen districts (Akola, Amravati, condition, and a high score to those Aurangabad, Bhandara, Buldhana, districts with water deficit conditions. Chandrapur, Gadchiroli, Gondia, Hingoli, Nagpur, Wardha, Washim and Yavatmal) of the two study regions have normal water availability conditions (water availability in the range of 3,001-8,000 m3), four districts (Beed, Jalna, Nanded and Parbhani) have surplus water availability condi-8,001-12,000 m3), and two districts (Latur and Osmanabad) of Marathwam3). A low score has been given to the districts with water surplus condition; medium score has been given to the districts with normal water available given to all the districts here. Maharashtra has a heterogeneous geology. About 75% of the State's geographical area is underlain by hard rock formations of Deccan trap origin. About 15% of Chandrapur, Bhandara, Gadchiroli and Nagpur districts of the Vidarbha region is underlain by crystalline formations. About ten per cent of Akola, Buldhana, Yavatmal and Amravati districts of Vidarbha region is underlain by alluvial formations. In underlain by alluvial formations, the groundwater level in the wells varies between 3 m and 15mts. Therefore, low to moderate exposure scores are ### Socio-economic conditions in Marathwada and Vidarbha Regions of Maharashtra According to Census of India (Governis given. In other districts of both the ment of India, 2011), Maharashtra has nearly23.83 million hHHs, with 13 million in rural areas and 10.8 million fore a high exposure score has been in urban areas. Marathwada and given to all these districts. Vidarbha regions have about 11 million and 4 million HHs, respectively. About The analysis of access to drinking treated tap water supply, and 15% of in both the study regions. tion of HHs (about 55%) covered by treated drinking water supply and therefore a moderate exposure score regions coverage of treated water supply to rural HHs is very less; there- 24% of the HHs are covered with water sources within the premises shows that exposure to risk varies HHs have access to improved latrines from moderate to high. Hingoli, Jalna and Nanded districts of Marathwada and Gadchiroli, Gondia, Washim and According to the Census data of Yavatmal districts of Vidarbha have Maharashtra, only Amravati district higher risk exposure due to HHs not of Vidarbha region has a high propor- having access to water sources within their premises (Figure 3 & 4). Figure 10: Location of Drinking water source in Districts of Marathwada For computation of the risk index treated tap water suppl has considered from Census data for both regions. Figure 11: Location of Drinking water source in Districts of Vidarbha From the census data of Maharashtra ment of Revenue and Forest, GoM, it is observed that very less proporthe exposure of people living in the tion of people have access to modern low lying areas varies from low to toilets in both the regions, which high. As nearly one-third of populaexposes the region to higher climate tion of Bhandara (36%) and Chandrainduced risk. A high exposure score pur (30%) districts in Vidarbha region is given to all the districts, except are living in the low-lying areas, a Amravati and Nagpur in Vidarbha. moderate exposure score has been According to the data from Depart- given to these districts. In Nanded and Parbhani districts of the Marathwada region 89% and 51% of population are living in the low-lying areas, therefore a high exposure score has been given to these districts. ### Socio-economic conditions in Marathwada and Vidarbha Regions of Maharashtra (PHC) data was analyzed for all the districts of both the regions studied and it is observed that the indicator remaining districts have been given a been given to these districts. lowest vulnerability score. The indicaof Marathwada and two districts of Vidarbha have highly vulnerability in centres. The access to primary health centres Vidarbha have moderate vulnerability terms of children with stunting, thereas per access to the PHCs, and the fore a highest vulnerability score has varies from low to high. It is seen tor for percentage of children under. In terms of coverage of populations that in Nanded district of Marathwa- the age five with stunting (low-height with sub-health centres in these da and Wardha district of Vidarbha for age ratio) is rated lowest to districts, the vulnerability varies the proportion of access to the PHC highest. Only Chandrapur district of between lowest to moderate. From is less than in other districts which Vidarbha is less vulnerable in terms the MoHFW data it is observed that indicates a high vulnerability during of children with stunting. Therefore, five districts of Vidarbha and all the climate related risks. Therefore, a a low vulnerability score has been districts of Marathwada are moderhighest vulnerability score has been given to the district, while six districts ately vulnerable in terms of coverage given to these districts. Three districts of Marathwada and two districts of of rural population with sub health #### Analysis of primary data from Field survey A field survey was conducted in six most of the HHs in rural areas are and Gondia of Vidarbha public water districts namely Gadchiroli, Gondia mostly dependent on household tap source is the main water supply and Wardha of Vidarbha region, connection in their dwelling premises, channels (Figure 5). and Latur, Jalna and Beed districts as compared to other water supply of Marathwada. It is observed that sources. For rural HHs in Gadchiroli Based on the analysis of primary data constructed using the grants obtained for the latrines constructed by the from the sanitation campaigns of the individual rural HHs, it seems that Government and NGOs. most of the HHs have constructed Pour flush latrines in Vidarbha district, The values of indicator on hand-washwhile in the districts of Marathwa- ing were computed based on the da rural HHs have constructed pit primary data from field survey. It was latrines. The latrines are basically observed that rural HHs in the districts are aware of good hygiene practices. Most HHs practice hand-washing before and after having food, and after toilet use with soap and water. Therefore, lowest exposure score has been given to all the districts in both Vidarbha and Marathwada regions.